Определение слова «жидкость»

Толковый словарь Ефремовой:

жидкость ж.
Вещество, обладающее свойством течь и принимающее форму сосуда, в котором находится.

Толковый словарь Ушакова:

ЖИ́ДКОСТЬ, жидкости, ·жен.
1. Вещество, обладающее свойством течь и принимать форму сосуда, в котором находится, сохраняя неизменным свой объем. Бутылка с мутной жидкостью. Жидкость от клопов.
2. только ед. ·отвлеч. сущ. к жидкий во 2, 3, 4, 5 и 6 ·знач. (·разг. ). Жидкость аргументов. Жидкость волос.

Большой энциклопедический словарь:

ЖИДКОСТЬ — агрегатное состояние вещества, сочетающее в себе черты твердого состояния (сохранение объема, определенная прочность на разрыв) и газообразного (изменчивость формы). Для жидкости характерны ближний порядок в расположении частиц (молекул, атомов) и малое различие в кинетической энергии теплового движения молекул и их потенциальной энергии взаимодействия. Тепловое движение молекул жидкости состоит из колебаний около положений равновесия и сравнительно редких перескоков из одного равновесного положения в другое, с этим связана текучесть жидкости.

Большая советская энциклопедия:

Жидкость
Агрегатное состояние вещества, промежуточное между твёрдым и газообразным состояниями. Ж., сохраняя отдельные черты как твёрдого тела, так и газа, обладает, однако, рядом только ей присущих особенностей, из которых наиболее характерная — Текучесть. Подобно твёрдому телу, Ж. сохраняет свой объём, имеет свободную поверхность, обладает определённой прочностью на разрыв при всестороннем растяжении и т. д. С другой стороны, взятая в достаточном количестве Ж. принимает форму сосуда, в котором находится. Принципиальная возможность непрерывного перехода Ж. в газ также свидетельствует о близости жидкого и газообразного состояний.
По химическому составу различают однокомпонентные, или чистые. Ж. и двух- или многокомпонентные жидкие смеси (Растворы). По физической природе Ж. делятся на нормальные (обычные), Жидкие кристаллы с сильно выраженной анизотропией (зависимостью свойств от направления) и квантовые жидкости (См. Квантовая жидкость) — жидкие 4He, 3He и их смеси — со специфическими квантовыми свойствами при очень низких температурах. Нормальные чистые Ж. имеют только одну жидкую фазу (См. Фаза) (т. е. существует один единственный вид каждой нормальной Ж.). Гелий 4He может находиться в двух жидких фазах — нормальной и сверхтекучей, а жидкокристаллические вещества — в нормальной и одной или даже двух анизотропных фазах.
Общим для всех нормальных Ж., в том числе и для смесей, является их макроскопическую однородность И изотропность при отсутствии внешних воздействий. Эти свойства сближают Ж. с газами, но резко отличают их от анизотропных кристаллических твёрдых тел. Аморфные твёрдые тела (например, стекла), с современной точки зрения, являются переохлажденными Ж. (см. Аморфное состояние) и отличаются от обычных Ж. только численными значениями кинетических характеристик (существенно большей вязкостью и др.). Область существования нормальной жидкой фазы ограничена со стороны низких температур фазовым переходом в твёрдое состояние — кристаллизацией (См. Кристаллизация) или (в зависимости от величины приложенного давления) фазовым переходом в сверхтекучее состояние для 4He и в жидко-анизотропное состояние для жидких кристаллов. При давлениях ниже критического давления рк нормальная жидкая фаза ограничена со стороны высоких температур фазовым переходом в газообразное состояние — Испарением. При давлениях р > рк фазовый переход отсутствует и по своим физическим свойствам Ж. в этой области неотличима от плотного газа. Наивысшая температура Tk, при которой ещё возможен фазовый переход Ж. — газ, называется критической. Значения pk и Tk определяют критическую точку чистой Ж., в которой свойства Ж. и газа становятся тождественными. Наличие критической точки для фазового перехода Ж. — газ позволяет осуществить непрерывный переход из жидкого состояния в газообразное, минуя область, где газ и Ж. сосуществуют (см. Критическое состояние). Т. о., при нагревании или уменьшении плотности свойства Ж. (теплопроводность, вязкость, самодиффузия и др.), как правило, меняются в сторону сближения со свойствами газов. Вблизи же температуры кристаллизации большинство свойств нормальных Ж. (плотность, сжимаемость, теплоёмкость, электропроводность и т. д.) близки к таким же свойствам соответствующих твёрдых тел. В табл. приведены значения теплоёмкости при постоянном давлении (Ср) ряда веществ в твёрдом и жидком состояниях при температуре кристаллизации. Малое различие этих теплоёмкостей показывает, что тепловое движение в Ж. и твёрдых телах вблизи температуры кристаллизации имеет примерно одинаковый характер.
Теплоёмкость некоторых веществ [в дж/(кг·К)], при температуре кристаллизации
------------------------------------------------------------------------------------------------------------------------------------------------------
|                                | Na         | Hg              | Pb                | Zn          | Cl                | NaCl              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Ср, тв.                     | 1382      | 138             | 146              | 461         | 620              | 1405              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Ср, ж.                      | 1386      | 138             | 155              | 542         | 1800            | 1692              |
------------------------------------------------------------------------------------------------------------------------------------------------------
Молекулярная теория Ж. По своей природе силы межмолекулярного взаимодействия (См. Межмолекулярное взаимодействие) в Ж. и кристаллах одинаковы и имеют примерно одинаковые величины. Наличие в Ж. сильного межмолекулярного взаимодействия обусловливает, в частности, существование поверхностного натяжения (См. Поверхностное натяжение) на границе Ж. с любой др. средой. Благодаря поверхностному натяжению Ж. стремится принять такую форму, при которой её поверхность (при данном объёме) минимальна. Небольшие объёмы Ж. имеют обычно характерную форму Капли. В отсутствии внешних сил, когда действуют только межмолекулярные силы (например, в условиях невесомости (См. Невесомость)), Ж. приобретает форму шара. Влияние поверхностного натяжения на равновесие и движение свободной поверхности Ж., границ Ж. с твёрдыми телами или границ между несмешивающимися Ж. относится к области капиллярных явлений (См. Капиллярные явления).
Фазовое состояние вещества зависит от физических условий, в которых оно находится, главным образом от температуры Т и давления р. Характерной определяющей величиной является зависящее от температуры и давления отношение (Т, р) средней потенциальной энергии взаимодействия молекул к их средней кинетической энергии. Для твёрдых тел (Т, р) >> 1; это значит, что силы межмолекулярного взаимодействия велики и удерживают молекулы (атомы, ионы) вблизи равновесных положений — узлов кристаллической решётки, несмотря на тепловое движение частиц. В твёрдых телах тепловое движение имеет характер коллективных колебаний атомов (ионов) около узлов кристаллической решётки.
В газах осуществляется обратный предельный случай (Т, р) << 1; силы притяжения между молекулами недостаточны, чтобы удержать их вблизи друг от друга, вследствие чего положения и скорости молекул распределены почти хаотически.
Для Ж. (Т, р)~1: интенсивности упорядочивающих межмолекулярных взаимодействий и разупорядочивающего теплового движения молекул имеют сравнимые значения, чем и определяется вся специфичность жидкого состояния вещества. Тепловое движение молекул в неметаллических Ж. состоит из сочетания коллективных колебательных движений того же типа, что и в кристаллических телах, и происходящих время от времени скачков молекул из одних временных положений равновесия (центров колебаний) в другие. Каждый скачок происходит при сообщении молекуле энергии активации, достаточной для разрыва её связей с окружающими молекулами и перехода в окружение др. молекул. В результате большого числа таких скачков молекулы Ж. более или менее быстро перемешиваются (происходит самодиффузия, которую можно наблюдать, например, методом меченых атомов). Характерные частоты скачков составляют ~1011—1012 сек-—1 для низкомолекулярных Ж., много меньше для высокомолекулярных, а в отдельных случаях, например для сильно вязких Ж. и стекол, могут оказаться чрезвычайно низкими. При наличии внешней силы, сохраняющей своё направление более длительное время, чем интервалы между скачками, молекулы перемещаются в среднем в направлении этой силы. Т. о., статические или низкочастотные механические воздействия приводят к проявлению текучести Ж. как суммарному эффекту от большого числа молекулярных переходов между временными положениями равновесия. При частоте воздействий, превышающей характерные частоты молекулярных скачков, у Ж. наблюдаются упругие эффекты (например, сдвиговая упругость), типичные для твёрдых тел. Однородность и изотропность нормальных Ж. молекулярная теория Ж. объясняет отсутствием у них дальнего порядка во взаимных положениях и ориентациях молекул (см. Дальний порядок и ближний порядок). Положения и ориентации двух или более молекул, расположенных далеко друг от друга, оказываются статистически независимыми. В идеальном кристаллическом теле, как правило, существует «жёсткий» дальний порядок в расположении и ориентации молекул (атомов, ионов). В жидком кристалле дальний порядок наблюдается лишь в ориентации молекул, но он отсутствует в их расположении.
Ж. иногда разделяют на неассоциированные и ассоциированные, в соответствии с простотой или сложностью их термодинамических свойств. Предполагается, что в ассоциированных Ж. есть сравнительно устойчивые группы молекул — комплексы, проявляющие себя как одно целое. Существование подобных комплексов в некоторых растворах доказывается прямыми физическими методами. Наличие устойчивых ассоциаций молекул в однокомпонентных Ж. недостоверно.
Основой современных молекулярных теорий жидкого состояния послужило экспериментальное обнаружение в Ж. ближнего порядка — согласования (корреляции) во взаимных положениях и ориентациях близко расположенных групп, состоящих из 2, 3 и большего числа молекул. Эти статистической корреляции, определяющие молекулярную структуру жидкости, простираются на область протяжённостью порядка несколько межатомных расстояний и быстро исчезают для далеко расположенных друг от друга частиц (отсутствие дальнего порядка). Структурные исследования реальных Ж., позволившие установить эту особенность жидкого состояния, производятся методами рентгеновского структурного анализа (См. Рентгеновский структурный анализ) и нейтронографии (См. Нейтронография).
По структуре и способам их описания Ж. делят на простые и сложные. К первому сравнительно малочисленному классу относят однокомпонентные атомарные жидкости. Для описания свойств таких Ж. достаточно указать лишь взаимное расположение атомов. К этому классу Ж. относятся жидкие чистые металлы, сжиженные инертные газы и (с некоторыми оговорками) Ж. с малоатомными симметричными молекулами, например CCl4. Для простых Ж. результаты рентгено-структурного или нейтронографического анализа могут быть выражены с помощью т. н. радиальной функции распределения g (r) (см. рис.). Эта функция характеризует распределение частиц вблизи произвольно выбранной частицы, т. к. значения g (r) пропорциональны вероятности нахождения двух атомов (молекул) на заданном расстоянии r друг от друга. Ход кривой g (r) наглядно показывает существование определённой упорядоченности в простой Ж. — в ближайшее окружение каждой частицы входит в среднем определённое число частиц. Для каждой Ж. детали функции g (r) незначительно меняются с изменением температуры и давления. Расстояние до первого пика определяет среднее межатомное расстояние, а по площади под первым пиком можно восстановить среднее число соседей (среднее Координационное число) атома в Ж. В большинстве случаев эти характеристики вблизи линии плавления оказываются близкими к кратчайшему межатомному расстоянию и координационному числу в соответствующем кристалле. Однако, в отличие от кристалла, истинное число соседей у частицы и истинное межатомное расстояние в Ж. являются не постоянными числами, а случайными величинами, и по графику g (r) устанавливаются лишь их средние значения.
При сильном нагревании Ж. и приближении к газовому состоянию ход функции g (r) постепенно сглаживается соответственно уменьшению степени ближнего порядка. В разреженном газе g (r)—1.
Для сложных Ж. п для жидких смесей расшифровка рентгенограмм более сложна и во многих случаях полностью не может быть осуществлена. Исключение составляет Вода и некоторые др. низкомолекулярные Ж., для которых имеются довольно полные исследования и описания их статистической структуры.
Теория кинетических и динамических свойств Ж. (диффузии, вязкости и т. д.) разработана менее полно, чем равновесных свойств (теплоёмкости и др.). Динамическая теория жидкого состояния весьма сложна и пока не получила достаточного развития. В теории Ж. большое развитие получили численные методы, позволяющие рассчитывать свойства простых Ж. с помощью быстродействующих вычислительных машин. Наибольший интерес представляет метод молекулярной динамики, непосредственно моделирующий на вычислительной машине совместное тепловое движение большого числа молекул при заданном законе их взаимодействия и по прослеженным траекториям многих отдельных частиц восстанавливающий все необходимые статистические сведения о системе. Таким путём получены точные теоретические результаты относительно структуры и термодинамических свойств простых неметаллических Ж. Отдельную и ещё не решенную проблему составляет вопрос о структуре и свойствах простых Ж. в непосредственной окрестности критической точки (См. Критическая точка). Некоторые успехи были здесь достигнуты в последнее время методами теории подобия. В целом проблема критических явлений (См. Критические явления) для чистых Ж. и смесей остаётся ещё недостаточно выясненной.
Отдельную проблему составляет вопрос о структуре и свойствах жидких металлов (См. Жидкие металлы), на которые значительное влияние оказывают имеющиеся в них коллективизированные электроны. Несмотря на некоторые успехи, полной электронной теории жидких металлов ещё не существует. Значительные (пока ещё не преодоленные) трудности встретились при объяснении свойств жидких полупроводников (См. Жидкие полупроводники).
Основные направления исследований жидкого состояния. Многочисленные макроскопические свойства Ж. изучаются и описываются методами различных разделов механики, физики и физической химии. Равновесные механические и тепловые свойства Ж. (сжимаемость, теплоёмкость и др.) изучаются термодинамическими методами. Важнейшей задачей является нахождение уравнения состояния (См. Уравнение состояния) для давления и энергии как функции от плотности и температуры, а в случае растворов — и от концентраций компонентов. Знание уравнения состояния позволяет методами термодинамики установить многочисленные связи между различными механическими и тепловыми характеристиками Ж. Имеется большое количество эмпирических, полуэмпирических и приближённых теоретических уравнений состояния для различных индивидуальных жидкостей и их групп.
Неравновесные тепловые и механические процессы в Ж. (например, диффузия, теплопроводность, электропроводность и др.), особенно в смесях и при наличии химических реакций, изучаются методами термодинамики необратимых процессов (См. Необратимые процессы).
Механические движения Ж., рассматриваемых как сплошные среды, изучаются в гидродинамике (См. Гидродинамика). Важнейшее значение имеет НавьеСтокса уравнение (См. НавьеСтокса уравнения), описывающее движение вязкой Ж. У т. н. ньютоновских Ж. (вода, низкомолекулярные органические Ж., расплавы солей и др.) вязкость не зависит от режима течения (в условиях ламинарного течения (См. Ламинарное течение), когда Рейнольдса число R /i> R<sub>kpитич.</sub>), в этом случае вязкость является физико-химической постоянной, определяемой молекулярной природой Ж. и её состоянием (температурой и давлением). У неньютоновских (структурно-вязких) Ж. вязкость зависит от режима течения даже при малых числах Рейнольдса (жидкие полимеры, стекла в интервале размягчения, эмульсии и др.). Свойства неньютоновских Ж. изучает <<Реология. Специфические особенности течения жидких металлов, связанные с их электропроводностью и лёгкой подверженностью влиянию магнитных полей, изучаются в магнитной гидродинамике (См. Магнитная гидродинамика). Приложения методов гидродинамики к задачам молекулярной физики жидкостей изучаются в физико-химической гидродинамике.
Лит.: Френкель Я. И., Собрание избранных трудов, т. 3, М., 1959; Фишер И.3., Статистическая теория жидкостей, М., 1961; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, М., 1953; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Скрышевский А. Ф., Рентгенография жидкостей, К., 1966; Физика простых жидкостей. Экспериментальные исследования, пер. с англ., М., 1972 [в печати].
И. З. Фишер.

Вид радиальной функции распределения g(r) для жидкого натрия (в условных единицах): а — распределение частиц в зависимости от расстояния r; б — число частиц в тонком сферическом слое как функция расстояния r. Пунктиром показано распределение молекул при отсутствии упорядоченности в их расположении (газ). Вертикальные отрезки — положения атомов в кристаллическом натрии, числа при них — количество атомов в соответствующих координационных сферах (т. н. координационные числа).

Толковый словарь Даля:

жидкость
См. жидкий

Толковый словарь Кузнецова:

жидкость
ЖИДКОСТЬ -и; ж.
1. Вещество, обладающее свойством течь и принимать форму сосуда, в котором оно находится. Сосуд с жидкостью. Золотистая ж. в стакане.
2. к Жидкий (3-4 зн.). Ж. волос. Ж. звука.
Жидкостный, -ая, -ое. Техн. (1 зн.). Ж. двигатель (работающий на жидком топливе).

Малый академический словарь:

жидкость
-и, ж.
1.
Вещество, обладающее свойством течь и принимать форму сосуда, в котором оно находится.
Сосуд с жидкостью.
2.
Свойство по прил. жидкий (в 3 и 4 знач.).
Малый заряд слышен по жидкости звука выстрелов, похожих на хлопанье арапника или пастушьего кнута. С. Аксаков, Записки ружейного охотника.

Орфографический словарь Лопатина:

орф.
жидкость, -и

Физический энциклопедический словарь:

Агрегатное состояние в-ва, промежуточное между твёрдым и газообразным. Ж. присущи нек-рые черты твёрдого тела (сохраняет свой объём, образует поверхность, обладает определ. прочностью на разрыв) и газа (принимает форму сосуда, в к-ром находится, может непрерывно переходить в газ); в то же время она обладает рядом только ей присущих особенностей, из к-рых наиб. характерная — текучесть.
По хим. составу различают однокомпонентные, или чистые, Ж. и двух- или многокомпонентные жидкие смеси (р-ры). По физ. природе Ж. делятся на нормальные (обычные) Ж., жидкие кристаллы с сильно выраженной анизотропией и квантовые жидкости (жидкие 4Не, 3Не и их р-ры). Нормальные чистые Ж. имеют только одну жидкую фазу, 4Не может находиться в двух жидких фазах — нормальной и сверхтекучей, 3Не — в нормальной и двух сверхтекучих, а жидкокрист. в-ва — в нормальной и одной или даже неск. анизотропных фазах.
Норм. Ж. макроскопически однородны и изотропны при отсутствии внеш. воздействий. Эти св-ва сближают Ж. с газами, но резко отличают их от анизотропных крист. тв. тел. Аморфные тв. тела (напр., стёкла) явл. переохлаждёнными Ж. (см. АМОРФНОЕ СОСТОЯНИЕ) и отличаются от обычных Ж. существенно большей вязкостью и числ. значениями кинетич. хар-к.
Область существования нормальной жидкой фазы для чистых Ж., жидкого 4Не и жидких кристаллов ограничена со стороны низких темп-р Т фазовыми переходами соотв. в твёрдое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние. При давлениях р ниже критич. давления рк нормальная жидкая фаза ограничена со стороны высоких Т фазовым переходом в газообразное состояние — испарением. При давлениях р>рк фазовый переход отсутствует и по физ. св-вам Ж. в этой области неотличима от плотного газа. Наивысшая темп-ра Тк, при к-рой ещё возможен фазовый переход жидкость — газ, наз. критической. Значения рк и Тк определяют критич. точку чистой Ж., в к-рой св-ва Ж. и газа становятся тождественными. Наличие критич. точки для фазового перехода жидкость — газ позволяет осуществить непрерывный переход из жидкого состояния в газообразное, минуя область, где газ и Ж. сосуществуют (см. КРИТИЧЕСКОЕ СОСТОЯНИЕ).
При нагревании или уменьшении плотности св-ва Ж. (теплопроводность, вязкость, самодиффузия и др.), как правило, меняются в сторону сближения со св-вами газов. Вблизи же темп-ры кристаллизации большинство св-в норм. Ж. (плотность, сжимаемость, теплоёмкость, электропроводность и др.) близки к таким же св-вам соответствующих тв. тел. Ниже приведены значения теплоёмкости (в Дж/кг•К) при пост. давлении (ср) нек-рых в-в в твёрдом и жидком состояниях при темп-ре кристаллизации:

Малое различие этих теплоёмкостей показывает, что тепловое движение в Ж. и тв. телах вблизи темп-ры кристаллизации имеет примерно одинаковый хар-р.
Наличие сильного межмолекулярного взаимодействия обусловливает существование поверхностного натяжения на границе Ж. с любой другой средой. Влияние поверхностного натяжения на равновесие и движение свободной поверхности Ж., границ Ж. с тв. телами или границ между несмешивающимися Ж. относится к области капиллярных явлений.
Характерная величина, определяющая фазовое состояние в-ва, e(Т, р) — отношение ср. потенц. энергии вз-ствия молекул к их ср. кинетич. энергии, зависящее от Т и р. Для Ж. e(Т, р)=1, это означает, что интенсивности упорядочивающих межмол. вз-ствий и разупорядочивающего теплового движения молекул имеют сравнимые значения, чем и определяется вся специфичность жидкого состояния в-ва (для тв. тел e(T, р)->1, для газов e(T, р)<-1). Тепловое движение молекул Ж. состоит из сочетания коллективных колебат. движений того же типа, что и в крист. телах, и происходящих время от времени скачков молекул из одних временных положений равновесия (центров колебаний) в другие. Каждый скачок происходит при сообщении молекуле энергии активации, достаточной для разрыва её связей с окружающими молекулами и перехода в окружение др. молекул. В результате большого числа таких скачков молекулы Ж. более или менее быстро перемешиваются (происходит самодиффузия, к-рую можно наблюдать, напр., методом меченых атомов). Характерные частоты скачков составляют 1011 — 1012 с-1 для низкомол. Ж., много меньше — для высокомолекулярных, а в отд. случаях, напр. для сильновязких Ж. и стёкол, могут оказаться чрезвычайно низкими.
Колебат. часть теплового движения ч-ц Ж. может быть описана с помощью набора дебаевских волн, к-рые могут проявляться в спектрах Мандельштама — Бриллюэна рассеяния и рассеяния нейтронов. Неупорядоченная часть движения молекул, связанная гл. обр. с тепловым трансляц. движением, проявляется в спектрах рассеянных жидкостью пучков света или нейтронов в виде дополнительной несмещённой довольно интенсивной компоненты, отсутствующей у кристаллов. Термодинамич. теория рассеяния света объясняет её как результат рассеяния света на флуктуациях энтропии. Изучение спектров рассеянных света и нейтронов явл. мощным инструментом исследования поляризационных и др. коллективных движений в Ж.
При наличии внеш. силы, сохраняющей своё направление более длит. время, чем интервалы между скачками, молекулы перемещаются в ср. в направлении этой силы. Т. о., статич. или НЧ механич. воздействия приводят к проявлению текучести Ж. как суммарному эффекту от большого числа мол. переходов между временными положениями равновесия. При частоте воздействий, превышающей характерные частоты мол. скачков, у Ж. наблюдаются упругие эффекты (напр., сдвиговая упругость), типичные для тв. тел.
В рамках мол. теории однородность и изотропность нормальных Ж. объясняется отсутствием у них дальнего порядка во взаимных положениях и ориентациях молекул (см. ДАЛЬНИЙ И БЛИЖНИЙ ПОРЯДОК). Положения и ориентации двух или более молекул, расположенных далеко друг от друга, оказываются статистически независимыми. В жидких кристаллах дальний порядок наблюдается лишь в ориентации молекул, но отсутствует в расположении их центров масс.
Ж. иногда разделяют на неассоциированные и ассоциированные, в соответствии с простотой или сложностью их термодинамич. св-в. Предполагается, что в ассоциированных Ж. есть сравнительно устойчивые группы молекул — комплексы, проявляющие себя как одно целое. Существование подобных комплексов в нек-рых р-рах доказывается прямыми физ. методами. Наличие устойчивых ассоциаций молекул в однокомпонентных Ж. недостоверно.
Основой совр. мол. теорий жидкого состояния послужило эксперим. обнаружение методами рентгеновского структурного анализа и нейтронографии ближнего порядка в Ж.— согласования (корреляции) во взаимных положениях и ориентациях близко расположенных групп, состоящих из двух, трёх и большего числа молекул. Эти статистич. корреляции, определяющие мол. структуру жидкости, простираются на область протяжённостью порядка неск. межат. расстояний и исчезают для далеко расположенных друг от друга ч-ц (отсутствие дальнего порядка).
По структуре и способам описания Ж. делят на простые и сложные. К первому классу относят однокомпонентные атомарные жидкости (жидкие чистые металлы, сжиженные инертные газы и, с нек-рыми оговорками, Ж. с малоат. симметричными молекулами, напр. ССl4). Для описания их св-в достаточно указать взаимное расположение атомов. Для простых Ж. результаты рентгеноструктурного или нейтронографич. анализа могут быть выражены с помощью т. н. радиальной функции распределения g(r) (рис.). Эта ф-ция характеризует распределение ч-ц вблизи произвольно выбранной ч-цы, т. к. значения g(r) пропорц. вероятности нахождения двух ч-ц на нек-ром заданном расстоянии r друг от друга.

Вид радиальной ф-ции распределения g(r) для жидкого натрия (в условных ед.): а — распределение ч-ц в зависимости от расстояния r; б — число ч-ц в тонком сферич. слое как ф-ции расстояния r (вертикальные отрезки — положения атомов в крист. натрии, числа при них — кол-во атомов в соответствующих координац. сферах, т. н. координац. числа). Пунктиром показано распределение атомов при отсутствии упорядоченности в их расположении (газ).
Ход кривой g(r) свидетельствует о существовании определ. упорядоченности в простой Ж.— в ближайшее окружение каждой ч-цы входит в среднем определ. число ч-ц. Для каждой Ж. детали ф-ции g(r) незначительно меняются с изменением Т и р. Расстояние до первого пика определяет ср. межат. расстояние, а по площади под первым пиком можно установить ср. число «соседей» атома в Ж. (ср. координационное число). В большинстве случаев эти хар-ки вблизи линии плавления оказываются близкими к тем же величинам в соответствующем кристалле, однако, в отличие от кристалла, они явл. не постоянными числами, а изменяющимися во времени, и по графику устанавливаются лишь их ср. значения. При сильном нагревании Ж. и приближении её к газовому состоянию ход ф-ции g (r) сглаживается соотв. уменьшению степени ближнего порядка. В разреженном газе g(r)»1. Для сложных Ж. и для жидких смесей расшифровка результатов структурных исследований более трудна и во мн. случаях полностью не может быть осуществлена. Исключение составляют вода и нек-рые другие низкомол. Ж., для к-рых имеются довольно полные исследования и описания их статистич. структуры. Ф-ция g(r) может быть определена методом функций Грина или с помощью разл. приближённых интегр. ур-ний.
Теория кинетич. и динамич. св-в Ж. (диффузии, вязкости, динамики флуктуации и т. д.) разработана менее полно, чем теория равновесных св-в (ур-ния состояния, теплоёмкости и др.).
В теории Ж. большое развитие получили числ. методы, позволяющие рассчитывать св-ва простых Ж. с помощью быстродействующих ЭВМ — методы Монте-Карло и мол. динамики. Наибольший интерес представляет метод мол. динамики, непосредственно моделирующий на ЭВМ совместное тепловое движение большого числа молекул (при заданном законе их вз-ствия) и по прослеженным траекториям многих отд. ч-п восстанавливающий все необходимые статистич. сведения о системе. Таким путём получены точные теор. результаты относительно структуры и термодинамич. св-в многих простых Ж.
Отд. проблему составляет вопрос о структуре и св-вах простых Ж. в непосредств. окрестности критич. точки. Большие успехи здесь достигнуты методами теории подобия (гипотеза масштабной инвариантности).
Отд. проблему составляет вопрос о структуре и св-вах жидких металлов, на к-рые значит. влияние оказывают имеющиеся в них коллективизиров. эл-ны. Несмотря на нек-рые успехи, полной электронной теории жидких металлов ещё не существует. Значительные (пока ещё не преодоленные) трудности встретились при объяснении св-в жидких ПП.
Основные методы исследований жидкости. Многочисленные макроскопич. св-ва Ж. изучаются методами механики, физики и физ. химии. Равновесные механич. и тепловые св-ва Ж. (сжимаемость, теплоёмкость и др.) изучаются термодинамич. методами. Важнейшей задачей явл. нахождение уравнения состояния для давления и энергии как ф-ции от плотности и темп-ры, а в случае р-ров — и от концентраций компонентов. Знание ур-ния состояния позволяет методами термодинамики установить многочисл. связи между разл. механич. и тепловыми хар-ками Ж. Имеется большое число эмпирич., полуэмпирич. и приближённых теор. ур-ний состояния для разл. индивидуальных жидкостей и их групп.
Неравновесные тепловые и механич. процессы в Ж. (напр., диффузия, теплопроводность, электропроводность), особенно в смесях и при наличии хим. реакций, изучаются методами термодинамики необратимых процессов.
Механич. движения Ж. как сплошной среды изучаются в гидродинамике. Важнейшее значение имеет НавьеСтокса уравнение, описывающее движение вязкой Ж. У т. н. ньютоновских Ж. (вода, низкомолекулярные органич. Ж., расплавы солей и др.) вязкость не зависит от режима течения (в условиях ламинарного течения, когда Рейнольдса число R

Научно-технический словарь:

ЖИДКОСТЬ, состояние ВЕЩЕСТВА, промежуточное между твердым и газообразным. Жидкость имеет относительно фиксированный объем, однако, может растекаться, принимая форму сосуда, в котором содержится. Состояние вещества определяется температурой и давлением, которые оно испытывает; вещество, являющееся жидкостью, например, при комнатной температуре, как вода, может превратиться в газ (пар) при нагреве или в твердое вещество (лед) при охлаждении. Молекулы жидкости, в отличие от молекул газа, связаны друг с другом, хотя и слабо, кроме того, жидкости, подобно твердым телам, плохо поддаются сжатию под давлением.

Плотность (отношение массы к единице объема) смеси жидко стей может постепенно изменяться при помощи изменения пропорции ее составляющих. Поскольку плотность жидкости может быть измерена легко и точно, это свойство жидких тел предоставляет возможности для измерения плотности тел твердых. Предположим, что плотность твердого образца имеет величину в пределах от 1,0 до 1,5 г/см3 В растворе иодида калия с плотностью 1,5 образец плавает на поверхности (А); в воде (плотность 1,0) он тонет (В). Постепенным добавлением иодида калия в воду достигаем такого уровня насыщенности раствора, при котором образец остается в покое, не тонет и не всплывает (С). Плотность жидкости в этом слу-чае точно соответствует плотности твердого вещества. Она устанавливается при помощи взвешивания образца жидкости в «специальной уравновешенной бутыли» (D), которая имеет точно определенный объем

Грамматический словарь Зализняка:

Жидкость, жидкости, жидкости, жидкостей, жидкости, жидкостям, жидкость, жидкости, жидкостью, жидкостями, жидкости, жидкостях

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru