Определение слова «сверхпроводимость»

Большой энциклопедический словарь:

СВЕРХПРОВОДИМОСТЬ — физическое явление, наблюдаемое у некоторых веществ (сверхпроводников) при охлаждении их ниже определенной критической температуры Тк и состоящее в обращении в нуль электрического сопротивления постоянному току и в выталкивании магнитного поля из объема образца (Мейснера эффект). Сверхпроводимость открыта Х. Камерлинг-Оннесом (1911) в Hg. Теория создана в 1967. Переход в сверхпроводящее состояние связан с образованием куперовских пар электронов (см. Купера эффект). Механизм сверхпроводимости у т. н. высокотемпературных сверхпроводников (с Тк 100К) пока неизвестен.

Толковый словарь Кузнецова:

сверхпроводимость
СВЕРХПРОВОДИМОСТЬ -и; ж. Способность проводников при очень низкой температуре терять электрическое сопротивление. Явление сверхпроводимости. С. металлов. Теория сверхпроводимости.
Сверхпроводимый, -ая, -ое.

Орфографический словарь Лопатина:

орф.
сверхпроводимость, -и

Физический энциклопедический словарь:

Свойство мн. проводников, состоящее в том, что их электрич. сопротивление скачком падает до нуля при охлаждении ниже определённой критич. темп-ры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлич. элементов, у большого числа сплавов и интерметаллич. соединений, а также у нек-рых ПП и полимеров. Рекордно высоким значением Тк (ок. 23 К) обладает соединение Nb3Ge (см. СВЕРХПРОВОДНИКИ).
Основные явления. Скачкообразное исчезновение сопротивления ртути при понижении темп-ры впервые наблюдал голл. физик X. Камерлинг-Оннес (1911) (рис. 1). Он пришёл к выводу, что ртуть при T=4,15 К переходит в новое состояние, к-рое было названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрич. сопротивление ртути восстанавливается при Т<Тк в достаточно сильном магн. поле (см. КРИТИЧЕСКОЕ МАГНИТНОЕ ПОЛЕ) . Падение сопротивления до нуля происходит на протяжении очень узкого интервала темп-р, ширина к-рого для чистых образцов составляет 10-3—10-4 К и возрастает при наличии примесей и др. дефектов структуры.
Рис. 1. Зависимость сопротивления R от темп-ры Т для Hg и для Pt. Ртуть при T=4,15 К переходит в сверхпроводящее состояние. R0°С — значение R при 0°С.
Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в к-рых в сверхпроводящем кольце возбуждается ток, практически не затухающий. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой нек-рый угол. Кольца охлаждаются в присутствии магн. поля ниже темп-ры Тк, после чего поле выключается. При этом в кольцах возбуждаются токи, вз-ствие между к-рыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах явл. незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше, чем 10-20 Ом•см (сопротивление чистых образцов Cu или Ag составляет ок. 10-9 Ом•см при темп-ре жидкого гелия). Однако сверхпроводник не явл. просто идеальным проводником. В 1933 нем. физики В. Мейснер и Р. Оксенфельд установили, что слабое магн. поле не проникает в глубь сверхпроводника независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магн. поток (рис. 2, а, б, в).
Выталкивание магн. поля из сверхпроводящего образца (Мейснера эффект) означает, что в присутствии внеш. магн. поля такой образец ведёт себя, как идеальный диамагнетик той же формы с магнитной восприимчивостью c=1/4p. В частности, если образец имеет форму длинного сплошного цилиндра, а внеш. поле Н однородно и параллельно оси цилиндра, то магн. момент, отнесённый к единице объёма, М=-Н/4p. Это примерно в 105 раз больше по абс. величине, чем для металла в норм. состоянии. Эффект Мейснера связан с тем, что при Н
Рис. 2. Распределение магн. поля около сверхпроводящего шара и около шара с исчезающим сопротивлением (идеальный проводник): а — при Т>Тк; б — при Т<Тк, внеш. поле Hвн?0; в — при Т<Тк, Нвн=0.
По своему поведению в достаточно сильных полях сверхпроводники подразделяются на две большие группы, т. н. сверхпроводники 1-го и 2-го рода. Кривые намагничивания М(Н), типичные для каждой из этих групп, приведены на рис. 3 и 4.
Рис. 3. Кривая намагничивания сверхпроводников 1-го рода. Образцы — цилиндрические, длинные: намагничивающее поле направлено вдоль оси цилиндра (в этих условиях устранены эффекты размагничивания).
Рис. 4. Кривая намагничивания сверхпроводников 2-го рода, полученная в тех же условиях, что и на рис. 3.
Нач. прямолинейный участок кривых намагничивания, где М=-H/4p, соответствует интервалу значений H, на к-ром имеет место эффект Мейснера. Дальнейший ход кривых М(Н) для сверхпроводников 1-го и 2-го рода существенно различается.
Сверхпроводники 1-го рода теряют С. в поле Н=Нк, когда поле скачком проникает в металл и он во всём объёме переходит в норм. состояние. При этом уд. магн. момент также скачком уменьшается в 105 раз. Критич. полю можно дать простое термодинамич. истолкование. При темп-ре Т<Тк и в отсутствии магн. поля свободная энергия (см. ГЕЛЬМГОЛЬЦА ЭНЕРГИЯ) в сверхпроводящем состоянии Fc ниже, чем в нормальном Fн. При включении поля свободная энергия сверхпроводника возрастает на величину H2/8p, равную работе намагничивания, и при Н=Нк сравнивается с Fн (в силу малости магн. момента в норм. состоянии Fн практически не изменяется при включении поля). Т. о., поле Hк определяется из условия:
Fc+H2к/8p=Fн. (1)
Критич. поле Нк зависит от темп-ры: оно максимально при T=0 и монотонно убывает до нуля при Т ® Тк.
Рис. 5. Фазовая диаграмма для сверхпроводников 1-го и 2-го рода.
На рис. 5 приведена фазовая диаграмма на плоскости (Н, Т). Заштрихованная область, ограниченная кривой Нк(Т), соответствует сверхпроводящему состоянию. По измеренной зависимости Нк (Т) могут быть рассчитаны все термодинамич. хар-ки сверхпроводника 1-го рода. В частности, из ф-лы (1) непосредственно получается (при дифференцировании по темп-ре) выражение для теплоты фазового перехода Q в сверхпроводящее состояние:
где S — энтропия ед. объёма. Знак Q таков, что теплота поглощается сверхпроводником при переходе в норм. состояние. Поэтому, если разрушение С. магн. полем производится при адиабатич. изоляции образца, то последний будет охлаждаться. В действительности скачкообразный характер фазового перехода в магн. поле (рис. 3) наблюдается только в случае длинного цилиндра в продольном поле. При произвольной форме образца и др. ориентациях поля переход оказывается растянутым по нек-рому интервалу значений H: он начинается при Н<Нк и заканчивается, когда поле
во всех точках образца превысит Hк. В этом интервале значений l сверхпроводник 1-го рода находится в т. н. промежуточном состоянии. Он расслаивается на чередующиеся области норм. и сверхпроводящей фаз, причём так, что поле в норм. фазе вблизи границы раздела параллельно этой границе и равно Hк. По мере увеличения поля возрастает доля норм. фазы и происходит уменьшение магн. момента образца.
С магн. св-вами сверхпроводников тесно связаны и особенности протекания в них тока. В силу эффекта Мейснера ток явл. поверхностным, он сосредоточен в тонком слое, определяемом глубиной проникновения магн. поля. Когда ток достигает нек-рой критич. величины, достаточной для создания критич. магн. поля, сверхпроводник 1-го рода переходит в промежуточное состояние и приобретает электрич. сопротивление.
Картина разрушения сверхпроводимости магн. полем у сверхпроводников 2-го рода сложнее. Даже в случае цилиндрич. образца (рис. 4) в продольном поле происходит постепенное уменьшение магн. момента на протяжении значит. интервала полей от Hк., 1 — ниж. критич. поля, когда оно начинает проникать в толщу образца, и до верх. критич. поля Hк, 2, при к-рой происходит полное разрушение сверхпроводящего состояния. В большинстве случаев кривая намагничивания такого типа необратима (наблюдается магн. гистерезис). Поле Hк, 2 часто оказывается весьма большим; достигая сотен тысяч эрстед. Термодинамич. критич. поле Hк, определяемое соотношением (1), для сверхпроводников 2-го рода не явл. непосредственно наблюдаемой хар-кой. Его можно рассчитать, исходя из найденных опытным путём значений свободной энергии в норм. и сверхпроводящем состояниях в отсутствии магн. поля. Вычисленное таким способом значение Hк попадает в интервал между Hк, 1 и Hк, 2. Т. о., проникновение магн. поля в сверхпроводник 2-го рода начинается уже в поле, меньшем чем Hк, когда условие равновесия (1) ещё нарушено в пользу сверхпроводящего состояния. Связано это с поверхностной энергией границы раздела норм. и сверхпроводящей фаз. В случае сверхпроводников 1-го рода эта энергия положительна, так что появление поверхности раздела требует энергетич. затрат. Это существенно ограничивает степень расслоения в промежуточном состоянии. Аномальные магн. св-ва сверхпроводников 2-го рода можно качественно объяснить, если принять, что в этом случае поверхностная энергия отрицательна. Именно к такому выводу приводит совр. теория сверхпроводимости. При отрицат. поверхностной энергии уже при H
Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля. Прямые измерения теплоёмкости сверхпроводников при Н=0 показывают, что при понижении темп-ры теплоёмкость в точке перехода Тк испытывает скачок до величины, к-рая примерно в 2,5 раза превышает её значение в норм. состоянии в окрестностях Тк (рис. 6).
Рис. 6. Скачок теплоёмкости сверхпроводника в точке перехода (Тк) в отсутствии внеш. магн. поля (сc и cн — теплоёмкость в сверхпроводящем и норм. состояниях).
При этом теплота перехода Q=0, что следует, в частности, из ф-лы (2) (Hк=0 при T=Tк). Т. о., переход из нормального в сверхпроводящее состояние в отсутствии магн. поля — фазовый переход II рода. Из ф-лы (2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой Нк(Т) (рис. 5) в точке Т=Тк:
где сс и сн — значения теплоемкости в сверхпроводящем и норм. состояниях. Это соотношение подтверждено экспериментом.
Природа сверхпроводимости. Исследуя разл. возможности объяснения св-в сверхпроводников, особенно эффекта Мейснера, нем. учёные X. и Ф. Лондоны, работавшие в Англии, в 1934 пришли к заключению, что сверхпроводящее состояние явл. макроскопич. квант. состоянием металла. На основе этого представления они создали феноменологич. теорию, объясняющую эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное В. Л. Гинзбургом и Л. Д. Ландау (1950), позволило рассмотреть поведение сверхпроводников в сильных магн. полях. При этом было объяснено огромное кол-во эксперим. данных и предсказаны новые важные явления. Подтверждением правильности исходных предпосылок упомянутых теории явилось открытие эффекта квантования магнитного потока, заключённого внутри сверхпроводящего кольца. Из ур-ний Лондонов следует, что магн. поток в этом случае может принимать лишь значения, кратные кванту потока Ф0=hc/e*, где е* — заряд носителей сверхпроводящего тока. В 1961 Р. Долл и М. Небауэр и независимо Б. Дивер и У. Фейрбенк (США) обнаружили этот эффект. Оказалось, что е*=2е. где е — заряд эл-на. Явление квантования магн. потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магн. поле, большем чем Нк, 1. Образующиеся здесь нити норм. фазы несут квант потока Ф0.
Найденная в опытах величина заряда ч-ц, создающих своим движением сверхпроводящий ток (е*=2е), подтверждает Купера эффект, на основе к-рого в 1967 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопич. теорию С. Согласно Куперу, два эл-на с противоположными спинами, взаимодействуя через посредство крист. решётки (обмениваясь фононами), могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2е. Пары обладают нулевым значением спина и подчиняются Бозе — Эйнштейна статистике. В сверхпроводящем металле пары испытывают т. и. бозе-конденсацию (см. КВАНТОВАЯ ЖИДКОСТЬ), и поэтому система куперовских пар обладает св-вом сверхтекучести. Т. о., С. представляет собой сверхтекучесть электронной жидкости.
При Т=0 связаны в пары все эл-ны проводимости. Энергия связи эл-нов в паре весьма мала: она равна примерно 3,5 kTк. При разрыве пары, происходящем, напр., при поглощении кванта эл.-магн. поля (фотона) или кванта звука (фонона), в системе возникают возбуждения. При отличной от нуля темп-ре имеется определённая . равновесная концентрация элем. возбуждений (квазичастиц), она возрастает с темп-рой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетич. спектре возбуждений, т. е. миним. энергию, необходимую для создания отд. возбуждения. Природа сил притяжения между эл-нами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются вз-ствием эл-нов с фононами. Тем не менее развитие теории С. стимулировало поиски др. механизмов С. В этом плане особое внимание уделяется т. н. нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в к-рых можно ожидать более интенсивного притяжения между эл-нами, чем в обычных сверхпроводниках, а следовательно, и более высокой темп-ры перехода в сверхпроводящее состояние. Явления, родственные С., по-видимому, могут иметь место в ат. ядрах и в нек-рых косм. объектах, напр. в нейтронных звёздах.
Практич. применение С. непрерывно расширяется. Наряду с магнитами сверхпроводящими, сверхпроводящими магнитометрами существует целый ряд др. технич. устройств и измерит. приборов, основанных на использовании разл. св-в сверхпроводников (криоэлектроника). Построены сверхпроводящие резонаторы, обладающие рекордно высокой (до 1010) добротностью; сверхпроводящие элементы для ЭВМ. Сверхпроводящие (туннельные) контакты (см. ДЖОЗЕФСОНА ЭФФЕКТ) применяют в сверхчувствит. вольтметрах и т. д.

Научно-технический словарь:

СВЕРХПРОВОДИМОСТЬ, электрическое свойство металлов и их сплавов, охлажденных до очень низких температур. В сверхпроводящей цепи электрический ток течет бесконечно, т.к. там нет электрического СОПРОТИВЛЕНИЯ. Сверхпроводимость впервые была замечена в веществах при температуре близкой к АБСОЛЮТНОМУ НУЛЮ. Сейчас продолжаются научно-исследовательские работы над разработкой сверхпроводников, функционирующих при более высоких температурах.

Техника. Современная энциклопедия:

сверхпроводимость
Физическое явление, наблюдаемое у некоторых веществ (сверхпроводников) при охлаждении их ниже определённой критической температуры Тк, состоящее в скачкообразном исчезновении (обращении в нуль) электрического сопротивления постоянному току и в выталкивании магнитного поля из объёма образца (Мейснера эффект). Открыта в 1911 г. голландским физиком Х. Каммерлинг-Оннесом в опытах с ртутью. Позднее сверхпроводимость удалось обнаружить у многих металлов (свинца, алюминия, тантала, ниобия), металлических сплавов, химических соединений, у некоторых полупроводников и полимеров. Такие материалы называют сверхпроводниками. К сверхпроводникам относятся ок. половины металлов (напр., Al, Тк = 1.2 К; Pb, Тк = 7.2 К), несколько сотен сплавов (напр., Ni – Ti, Тк = 9.8 К), в т. ч. интерметаллические соединения (напр., Nb Ge, Тк = 23 К), многие полупроводники (напр., GeTe, Тк = 0.17 К). Критическая температура традиционных сверхпроводников находится в пределах 0.1—23 К. В 1986– 87 гг. открыты высокотемпературные оксидные сверхпроводники (VBaCu O7 и др.) с Тк —100 К. Предполагается получение соединений с критической температурой, близкой к 300 К. Практическое применение сверхпроводимости ведётся при разработке сверхмощных магнитных систем и накопителей энергии, ускорителей заряженных частиц, силовых кабелей и трансформаторов большой мощности для систем централизованного распределения энергии, а также усилителей и измерительных устройств с низким уровнем собственных шумов. В сверхпроводниковых интегральных схемах активные элементы и электрические соединения выполнены из сверхпроводников. Перспективность сверхпроводниковых интегральных схем обусловлена высокой скоростью переключения, низ ким уровнем рассеиваемой мощности их активных элементов, способностью хранить информацию при отключении электрического питания. Использование сверхпроводниковых интегральных схем в цифровой вычислительной технике, информационно-измерительных системах, приборостроении и метрологии позволяет создавать принци_ пиально новые системы со значительно более высокими характеристиками.

Грамматический словарь Зализняка:

Сверхпроводимость, сверхпроводимости, сверхпроводимости, сверхпроводимостей, сверхпроводимости, сверхпроводимостям, сверхпроводимость, сверхпроводимости, сверхпроводимостью, сверхпроводимостями, сверхпроводимости, сверхпроводимостях

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru