Определение слова «АНТИЧАСТИЦЫ»

Большой энциклопедический словарь:

АНТИЧАСТИЦЫ — элементарные частицы, имеющие те же массу, спин, время жизни и некоторые другие внутренние характеристики, что и их "двойники"-частицы, но отличающиеся от частиц знаками электрического заряда и магнитного момента, барионного заряда, лептонного заряда, странности и др. Все элементарные частицы, кроме абсолютно нейтральных, имеют свои античастицы. При столкновении частицы и античастицы происходит их аннигиляция.

Большая советская энциклопедия:

Античастицы
Группа элементарных частиц (См. Элементарные частицы), имеющих те же значения масс и прочих физических характеристик, что и их «двойники»частицы, но отличающихся от них знаком некоторых характеристик взаимодействий (например, электрического заряда, магнитного момента). Сами названия «частица» и «античастица» в известной мере условны: можно было бы называть антиэлектрон (положительно заряженный электрон) частицей, а электрон — античастицей. Однако атомы вещества в наблюдаемой нами части Вселенной содержат электроны именно с отрицательным зарядом, а протоны — с положительным. Поэтому для известных к началу 20-х гг. 20 в. элементарных частиц — электрона и протона (и позднее нейтрона) — было принято название «частица».
Вывод о существовании А. впервые был сделан в 1930 английским физиком П. Дираком. Он вывел уравнение, описывающее поведение электрона при скоростях, близких к скорости света. Как оказалось, это уравнение обладает важным свойством симметрии: описывая отрицательно заряженный электрон, оно в то же время с необходимостью приводило к выводу о существовании частицы с такой же, как у электрона, массой, но с противоположным знаком заряда — антиэлектрона. Согласно теории Дирака, столкновение частицы и А. должно приводить к аннигиляции, исчезновению этой пары частица-А., в результате чего рождаются две или более других частиц, например фотоны (см. Аннигиляция и рождение пар).
В 1932 антиэлектроны экспериментально обнаружил американский физик К. Андерсон. Он фотографировал ливни, образованные космическими лучами (См. Космические лучи) в камере Вильсона (см. Вильсона камера), помещенной в магнитное поле. Заряженная частица движется в магнитном поле по дуге окружности, причём частицы с зарядами разных знаков отклоняются полем в противоположные стороны. Наряду с хорошо известными тогда следами быстрых электронов Андерсон обнаружил на фотографиях совершенно такие же по внеш. виду следы положительно заряженных частиц той же массы. Они были названы Позитронами. Экспериментальное обнаружение позитрона явилось блестящим подтверждением теории Дирака. С этого времени начались поиски др. А.
В 1936 также в космических лучах была обнаружена ещё одна пара частица-А.: положительные и отрицательные Мюоны (+-). В 1947 было установлено, что мюоны космических лучей возникают в результате распада несколько более тяжёлых частиц — пи-мезонов (См. Пи-мезоны) (+ и -).
В 1955 американские физики Э. Сегре, О. Чемберлен и другие зарегистрировали первые Антипротоны, полученные при рассеянии протонов очень высокой энергии (ускоренных на бэватроне Калифорнийского университета) на нуклонах (протонах и нейтронах) ядер мишени (мишенью служили ядра меди). Физическим процессом, в результате которого образовались антипротоны, было рождение пары протон-антипротон. Существование антипротонов наиболее ярко демонстрирует их последующая аннигиляция в столкновениях с протонами мишени. Именно благодаря аннигиляции были зарегистрированы открытые несколько позже Антинейтроны, не оставляющие следа в камере Вильсона из-за отсутствия у них электрического заряда. При аннигиляции как антипротона, так и антинейтрона возникает 4—5 -мезонов, часть которых заряжена и оставляет в камере Вильсона характерный след. К настоящему времени экспериментально обнаружены и зарегистрированы на фотографиях почти все А.; не наблюдались только антиомега-частицы [сама омега-частица (-) открыта в 1965] и некоторые А., соответствующие недавно открытым резонансным частицам (См. Резонансы). Однако нет никаких сомнений в их существовании.
Общие принципы квантовой теории поля (См. Квантовая теория поля) позволяют сделать ряд глубоких выводов о свойствах частиц и А. Прежде всего масса и Спин частицы должны совпадать с массой и спином А. (так же, как я их изотопические спины (См. Изотопический спин)). Далее, времена жизни частицы и её А. должны быть одинаковыми; в частности, стабильным частицам отвечают стабильные А. Одинаковыми по величине, но противоположными по знаку должны быть не только электрические заряды частицы и А., но и все другие величины, характеризующие их электрические (а следовательно, и магнитные) свойства, например магнитные моменты (См. Магнитный момент). Это относится и к электрически нейтральным частицам, таким, как нейтрон, Гипероны лямбда-ноль (°) и сигма-ноль (°). Их А. также электрически нейтральны, но обладают противоположными по знаку магнитными моментами. Противоположный знак имеют и другие Квантовые числа, которые приписываются частицам для описания закономерностей их взаимодействий: Барионный заряд, Лептонный заряд, Странность. Лишь несколько частиц истинно нейтральны: они не только не обладают никакими электрическими свойствами (их заряд и магнитный момент равны нулю), но и все остальные квантовые числа, отличающие частицу от А., у них равны нулю. Поэтому А. для истинно нейтральных частиц совпадают с самими частицами. Таковы фотон и нейтральные пи- и эта-мезоны (° и °).
До 1956 считалось, что имеется полная симметрия между частицами и А. Это означает, что если имеется какой-либо процесс между частицами, то должен существовать точно такой же процесс и между А. В 1956 обнаружено, что такая симметрия имеется только в сильных взаимодействиях (См. Сильные взаимодействия) (ядерных) и в электромагнитных взаимодействиях (См. Электромагнитные взаимодействия). В слабых взаимодействиях (См. Слабые взаимодействия), обусловливающих распады частиц, было открыто нарушение симметрии частица-А. В частности, геометрические характеристики распада частиц оказались отличными от характеристик распада соответствующих А.: если продукты распада частицы вылетают преимущественно в одну сторону, то продукты распада А. — в противоположную (см. рис. в ст. Элементарные частицы).
Из А. в принципе может быть построено «антивещество» точно таким же образом, как вещество из частиц. Однако возможность аннигиляции при встрече с частицами не позволяет А. сколько-нибудь длительное время существовать в веществе. А. могут долго «жить» только при условии полного отсутствия контакта с частицами вещества. Свидетельством наличия антивещества где-нибудь вблизи от известной нам части Вселенной было бы мощное аннигиляционное излучение, приходящее из области соприкосновения вещества и антивещества. Но пока астрофизике не известны данные, которые говорили бы о существовании во Вселенной областей, заполненных антивеществом.
Лит.: Форд К., Мир элементарных частиц, пер. с англ., М., 1965; Власов Н. А.. Антивещество, М., 1966 (библ. с. 180—184).
В. П. Павлов.

Толковый словарь Кузнецова:

античастицы
АНТИЧАСТИЦЫ -тиц; мн. (ед. античастица, -ы; ж.). Физ. Элементарные частицы с теми же массой, временем жизни и другими внутренними характеристиками, что и соответствующие им частицы, но противоположные им по ряду существенных физических свойств. Поток античастиц.

Малый академический словарь:

античастицы
-тиц, мн. (ед. античастица, -ы, ж.). физ.
Группа элементарных частиц, имеющих те же физические характеристики, что и соответствующие им частицы, но отличающиеся от них знаком электрического заряда.

Физический энциклопедический словарь:

Совокупность элем. частиц, имеющих те же значения масс и прочих физ. хар-к, что и их «двойники» — ч-цы, но отличающихся от них знаком нек-рых хар-к вз-ствий (напр., электрич. заряда, магн. момента). Название «ч-ца» и «А.» в известной мере условны: можно было бы называть антиэлектрон (положительно заряж. эл-н) ч-цей, а эл-н — А. Однако атомы в-ва в наблюдаемой части Вселенной содержат эл-ны с отрицат. зарядом, а протоны — с положительным. Поэтому для известных к нач. 20-х гг. 20 в. элем. ч-ц — эл-на и протона (и позднее нейтрона) было принято название «частица».
Вывод о существовании А. впервые был сделан в 1931 англ. физиком П. Дираком. Он вывел релятив. квант. ур-ние для эл-на (Дирака уравнение), к-рое оказалось симметричным относительно знака электрич. заряда: наряду с отрицательно заряж. эл-ном оно описывало положительно заряж. ч-цу той же массы — антиэлектрон. Согласно теории Дирака, столкновение ч-цы и А. должно приводить к их аннигиляции — исчезновению этой пары, в результате чего рождаются две или более других ч-ц, напр. фотоны.
В 1932 антиэлектроны были экспериментально обнаружены амер. физиком К. Андерсоном. Он фотографировал ливни, образованные космическими лучами в камере Вильсона, помещённой в магн. поле. Заряж. ч-ца движется в магн. поле по дуге окружности, причём ч-цы с зарядами разных знаков отклоняются полем в противоположные стороны. Наряду с хорошо известными тогда следами быстрых эл-нов Андерсон обнаружил на фотографиях совершенно такие же по внеш. виду следы положительно заряж. ч-ц той же массы. Эти ч-цы были названы позитронами. Открытие позитрона явилось блестящим подтверждением теории Дирака. С этого времени начались поиски других А.
В 1936 также в косм. лучах были обнаружены отрицат. и положит. мюоны (m- и m+), являющиеся ч-цей и А. по отношению друг к другу. В 1947 было установлено, что мюоны косм. лучей возникают в результате распада несколько более тяжёлых ч-ц — пи-мезонов (p-, p+). В 1955 в опытах на ускорителе были зарегистрированы первые антипротоны. Физ. процессом, в результате к-рого образовались антипротоны, было рождение пары протон — антипротон. Несколько позже были открыты антинейтроны. К 1981 экспериментально обнаружены А. практически всех известных элем. ч-ц.
Общие принципы квантовой теории поля позволяют сделать ряд глубоких выводов о св-вах ч-ц и А.: масса, спин, изотопический спин, время жизни ч-цы и её А. должны быть одинаковыми (в частности, стабильным ч-цам отвечают стабильные А.); одинаковыми по величине, но противоположными по знаку должны быть не только электрич. заряды (и магн. моменты) ч-цы и А., но и все остальные квант. числа, к-рые приписываются ч-цам для описания закономерностей их вз-ствий: барионный заряд, лептонный заряд, странность, «очарование» и др. Ч-ца, у к-рой все хар-ки, отличающие её от А., равны нулю, наз. истинно нейтральной; ч-ца и А. таких ч-ц тождественны. К ним относятся, напр., фотон, p0- и h-мезоны, J/y- и Y-частицы.
До 1956 считалось, что имеется полная симметрия между ч-цами и А. Это означает, что если возможен к.-л. процесс между ч-цами, то должен существовать точно такой же процесс и между А. В 1956 было обнаружено, что такая симметрия имеется только в сильном и эл.-магн. вз-ствии. В слабом вз-ствии было открыто нарушение симметрии частица-А. (см. ЗАРЯДОВОЕ СОПРЯЖЕНИЕ). Из А. в принципе может быть построено антивещество точно таким же образом, как в-во из ч-ц. Однако возможность аннигиляции при встрече с ч-цами не позволяет А. сколько-нибудь длит. время существовать в в-ве. А. могут долго «жить» только при условии полного отсутствия контакта с ч-цами в-ва. Свидетельством о наличии антивещества где-нибудь «вблизи» от Вселенной было бы мощное аннигиляц. излучение, приходящее на Землю из области соприкосновения в-ва и антивещества. Но пока астрофизике не известны данные, к-рые говорили бы о существовании во Вселенной областей, заполненных антивеществом.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru