Определение слова «определитель»

Толковый словарь Ефремовой:

определитель
I м.
1. То, чем определяется, обусловливается что-либо.
2. Руководство — книга, таблица и т.п. — для справок или для определения чего-либо.
II м.
Математическое выражение, с помощью которого можно кратко и понятно сформулировать правила решения и исследования алгебраических уравнений первой степени (в математике).

Толковый словарь Ушакова:

ОПРЕДЕЛИ́ТЕЛЬ, определителя, ·муж. (·книж. ).
1. То, что определяет, выражает собою что-нибудь.
2. Книга, служащая для справок при определении чего-нибудь (научн.). Определитель растений. Определитель грибов.
3. Выражение, составляемое из коэффициентов системы уравнений 1-й степени с несколькими неизвестными для упрощения вычисления корней уравнений (мат.).

Большой энциклопедический словарь:

ОПРЕДЕЛИТЕЛЬ (детерминант) — составленное по определенному правилу из n2 чисел математическое выражение, применяемое при решении и исследовании систем алгебраических уравнений 1-й степени. Число n называется порядком определителя. Так, определитель 2-го порядка, составленный из четырех чисел a1, b1, a2, b2, обозначается:и равен a1b2-b1a2.

Большая советская энциклопедия:

Определитель
Детерминант, особого рода математическое выражение, встречающееся в различных областях математики. Пусть дана Матрица порядка n, т. е. квадратная таблица, составленная из п2 элементов (чисел, функций и т. п.):
(1)
(каждый элемент матрицы снабжён двумя индексами: первый указывает номер строки, второйномер столбца, на пересечении которых находится этот элемент). Определителем матрицы (1) называется многочлен, каждый член которого является произведением n элементов матрицы (1), причём из каждой строки и каждого столбца матрицы в произведение входит лишь один сомножитель, т. е. многочлен вида
± a1a2...an. (2)
В этой формуле , , ..., есть произвольная перестановка чисел 1, 2, ..., n. Перед членом берётся знак +, если перестановка , , ..., чётная, и знак – , если эта перестановка нечётная. [Перестановку называют чётной, если в ней содержится чётное число нарушений порядка (или инверсий), т. е. случаев, когда большее число стоит впереди меньшего, и нечётной – в противоположном случае; так, например, перестановка 51243 – нечётная, т. к. в ней имеется 5 инверсий 51, 52, 54, 53, 43.] Суммирование производится по всем перестановкам , , ..., чисел 1, 2, ..., n. Число различных перестановок n символов равно n! = 1·2·3·...·n; поэтому О. содержит n! членов, из которых 1/2n! берётся со знаком + и 1/2n! со знаком –. Число n называется порядком О.
О., составленный из элементов матрицы (1), записывают в виде:
(3)
(или, сокращённо, в виде |aik|). Для О. 2-го и 3-го порядков имеем формулы:
= a11a22 – a12a21,

= a11a22a33 + a12a23a31 + a13a21a32 – a11a23a32 – a12a21a33 – a13a22a31.
О. 2-го и 3-го порядков допускают простое геометрическое истолкование: равен площади параллелограмма, построенного на векторах a1 = (x1, y1) и a2 = (х2.у2), а равен объёму параллелепипеда, построенного на векторах a1 = (x1, y1, z1), a2 = (x2, у2, z2) и а3 = (х3, y3, z3) (системы координат предполагаются прямоугольными).
Теория О. возникла в связи с задачей решения систем алгебраических уравнений 1-й степени (линейные уравнения (См. Линейное уравнение)). В наиболее важном случае, когда число уравнений равно числу неизвестных, такая система может быть записана в виде:
(4)
Эта система имеет одно определённое решение, если О. |aik|, составленный из коэффициентов при неизвестных, не равен нулю; тогда неизвестное xm (m = 1, 2, ..., n) равно дроби, у которой в знаменателе стоит О.|aik|, а в числителе — О., получаемый из |aik| заменой элементов m-го столбца (т. е. коэффициентов при хт) числами b1, b2, ..., bn. Так, в случае системы двух уравнений с двумя неизвестными

решение даётся формулами
; .
Если b1 = b2 = ..., = bn = 0, то систему (4) называется однородной системой линейных уравнений. Однородная система имеет отличные от нуля решения, только если |aik| = 0. Связь теории О. с теорией линейных уравнений позволила применить теорию О. к решению большого числа задач аналитической геометрии. Многие формулы аналитической геометрии удобно записывать при помощи О.; например, уравнение плоскости, проходящей через точки с координатами (x1, y1, z1), (x2, y2, z2), (х3, y3, z3), может быть записано в виде:
= 0.
О. обладают рядом важных свойств, которые, в частности, облегчают их вычисление. Простейшие из этих свойств следующие:
1) O. не изменяется, если в нём строки и столбцы поменять местами:
= ;
2) О. меняет знак, если в нём поменять местами две строки (или два столбца); так, например:
= – ;
3) О. равен нулю, если в нём элементы двух строк (или двух столбцов) соответственно пропорциональны; так, например:
= 0;
4) общий множитель всех элементов строки (или столбца) О. можно вынести за знак О.; так, например:
= k ;
5) если каждый элемент какого-нибудь столбца (строки) О. есть сумма двух слагаемых, то О. равен сумме двух О., причём в одном из них соответствующий столбец (строка) состоит из первых слагаемых, а в другом — из вторых слагаемых, остальные же столбцы (строки) — те же, что и в данном О.; так, например:
= + ;
6) О. не изменяется, если к элементам одной строки (столбца) прибавить элементы другой строки (другого столбца), умноженные на произвольный множитель; так, например:

= ;
7) О. может быть разложен по элементам какой-либо строки или какого-либо столбца. Разложение О. (3) по элементам i-й строки имеет следующий вид:
= ai1A i1 + ai2Ai2 + ...+ainAin.
Коэффициент Aik, стоящий при элементе aik в этом разложении, называется алгебраическим дополнением элемента aik. Алгебраическое дополнение может быть вычислено по формуле: Aik = (–1)i + kDik, где Dik — минор (подопределитель, субдетерминант), дополнительный к элементу aik, то есть О. порядка n-1, получающийся из данного О. посредством вычёркивания строки и столбца, на пересечении которых находится элемент aik. Например, разложение О. 3-го порядка по элементам второго столбца имеет следующий вид:

= –a12 + a22 – a32 .
Посредством разложения по элементам строки или столбца вычисление О. n-го порядка приводится к вычислению n определителей (n - 1)-го порядка. Так, вычисление О. 5-го порядка приводится к вычислению пяти О. 4-го порядка; вычисление каждого из этих О. 4-го порядка можно, в свою очередь, привести к вычислению четырёх О. 3-го порядка (формула для вычисления О. 3-го порядка приведена выше). Однако, за исключением простейших случаев, этот метод вычисления О. практически применим лишь для О. сравнительно небольших порядков. Для вычисления О. большого порядка разработаны различные, практически более удобные методы (для вычисления О. n-го порядка приходится выполнять примерно n3 арифметических операций).
Отметим ещё правило умножения двух О. n-го порядка: произведение двух О. n-го порядка может быть представлено в виде О. того же n-го порядка, в котором элемент, принадлежащий i-й строке и k-му столбцу, получается, если каждый элемент i-й строки первого множителя умножить на соответствующий элемент k-го столбца второго множителя и все эти произведения сложить; иными словами, произведение О. двух матриц равно О. произведения этих матриц.
В математическом анализе О. систематически используются после работ немецкого математика К. Якоби (2-я четверть 19 в.), исследовавшего О., элементы которых являются не числами, а функциями одного или нескольких переменных. Из таких О. наибольший интерес представляет определитель Якоби (Якобиан)
.
Определитель Якоби равен коэффициенту искажения объёмов при переходе от неременных х1, x2, ..., хп к переменным
y1 = f1(x1, ..., xn),
y2 = f2(x1, ..., xn),
………………….
yn = fn(x1, ..., xn).
Тождественное равенство в некоторой области этого О. нулю является необходимым и достаточным условием зависимости функций f1(x1, ..., xn), f2(x1, ..., xn), ..., fn(x1, ..., xn).
Во 2-й половине 19 в. возникла теория О. бесконечного порядка. Бесконечными О. называются выражения вида:
(5)
(односторонний бесконечный О.) и

(двусторонний бесконечный О.). Бесконечный О. (5) есть предел, к которому стремится О.

при бесконечном возрастании числа n. Если этот предел существует, то О. (5) называется сходящимся, в противном случае — расходящимся. Исследование двустороннего бесконечного О. иногда можно привести к исследованию некоторого одностороннего бесконечного О.
Теория О. конечного порядка создана в основном во 2-й половине 18 в. и 1-й половине 19 в. (работами швейцарского математика Г. Крамера, французских математиков А. Вандермонда, П. Лапласа, О. Коши, немецких математиков К. Гаусса и К. Якоби). Термин «О.» («детерминант») принадлежит К. Гауссу, современное обозначение — английскому математику А. Кэли.
Лит. см. при статьях Линейная алгебра, Матрица.

Толковый словарь Даля:

определитель
См. определять

Толковый словарь Кузнецова:

определитель
ОПРЕДЕЛИТЕЛЬ -я; м.
1. Книжн. То, чем определяется, обусловливается что-л. Звук может быть определителем скорости. Главным определителем времени является движение Солнца в космическом пространстве.
2. Спец. Руководство (книга или таблица) для определения чего-л. О. растений. О. рыб.
3. Матем. Математическое выражение, с помощью которого можно просто и кратко сформулировать правила решения и исследования алгебраических уравнений первой степени.

Малый академический словарь:

определитель
-я, м.
1.
То, чем определяется, обусловливается что-л.
--- наша пропаганда и пропаганда всех социал-демократических рабочих входит одним из определителей того, будет революция или нет. Ленин, Платформа реформистов и платформа революционных социал-демократов.
2.
Руководство (книга или таблица) для определения чего-л.
Определитель растений. Определитель рыб.
3. мат.
Математическое выражение, с помощью которого можно просто и кратко сформулировать правила решения и исследования алгебраических уравнений первой степени.

Математическая энциклопедия:

Детерминант, квадратной матрицы А=||aij|| порядка пнад ассоциативно-коммутативным кольцом K с единицей 1 — элемент кольца K, равный сумме всех членов вида где i1, . . ., in- перестановка чисел 1, . . ., п,a t- число инверсий перестановки i1,..., in. О. матрицы обозначается О. матрицы Асодержит п! членов; при n-1 det A =a11, при п=2det А=а 11 а 22-a2la12. Наиболее важные для приложений случаи: K — поле (в частности, числовое поле), К — кольцо функций (в частности, кольцо многочленов), K — кольцо целых чисел. Всюду ниже К- ассоциативно-коммутативное кольцо с 1, М п (К) — совокупность всех квадратных матриц порядка пнад K, Е п- единичная матрица над А. Пусть , а а 1, . . ., а п- строки матрицы А(все далее изложенное справедливо и для столбцов матрицы А). О. матрицы A удобно рассматривать как функцию от ее строк: Отображение подчинено следующим трем условиям: 1) d(A) — линейная функция любой строки матрицы А: где l, ; 2) если матрица Вполучена из Азаметной строки а i строкой , , то ; 3) Условия 1) — 3) однозначно определяют отображение d, т. е. если отображение удовлетворяет условиям 1) — 3), то h(A)=detА. Таким образом получается аксиоматич. построение теории О. Пусть отображение удовлетворяет условию: 1 а) если Вполучается из матрицы Л умножением одной строки на ,то . Очевидно, В случае, когда К- поле, совокупность условий 1) — 3) оказывается равносильной условиям 1 а), 2), 3). О. диагональной матрицы равен произведению ее диагональных элементов. Отсюда вытекает сюръективность отображения . О. треугольной матрицы также равен произведению ее диагональных элементов. Для матрицы , где Ви С- квадратные матрицы, Из свойств перестановок вытекает, что > где Т — знак транспонирования. Если матрица Аимеет две одинаковые строки, то ее определитель равен 0; если поменять местами две строки матрицы А, то ее О. изменит знак; при ; для А и В из М п (К) Таким образом, отображение dесть эпиморфизм мультипликативных полугрупп М п (К).и K. Пусть есть (mx n) матрица, есть (nx m) — матрица над K, а С=АВ. Тогда верна формула Вине-Коши: Пусть , a Aij- алгебраич. дополнение элемента aij. Тогда верны формулы где — символ Кронекера. Для вычислений О. часто используются разложение его по элементам строки или столбца, т. е. формулы (1), теорема Лапласа (см. Алгебраическое дополнение).и преобразования матрицы А, не меняющие О. Для матрицы Аиз М п (К).тогда и только тогда существует обратная матрица А -1 в М п (К), когда в Кимеется элемент, обратный элементу del A . Следовательно, отображение где GL ( п, К) — группа всех обратимых матриц в М п (К), т. е. полная линейная группа, а К*- группа обратимых элементов K, есть эпиморфизм этих групп. Квадратная матрица над полем обратима тогда и только тогда, когда ее О. отличен от нуля, n-мервые векторы a1..., а п над полем Fлинейно зависимы тогда и только тогда, когда О. матрицы Апорядка n>1 над полем равен 1 тогда и только тогда, когда Аесть произведение элементарных матриц вида где , a eij — матрица, единственный ненулевой элемент к-рой равен 1 и расположен на позиции (i, j). Теория О. возникла в связи с задачей решения систем линейных уравнений: где aij, bj- элементы нек-рого поля F. Если , где — матрица системы (2), то эта система имеет единственное решение, вычисляемое по формулам Крамера (см. Крамера правило). В случае, когда система (2) задана над кольцом Ки det Аобратим в К, система также имеет единственное решение, определяемое теми же формулами Крамера. Теория О. построена также и для матриц над некоммутативным ассоциативным телом. О. матрицы над телом k(определитель Дьёдонне) вводится следующим образом. Тело kрассматривается как полугруппа и строится ее коммутативный гомоморфный образ . k — группа k* с внешне присоединенным нулем 0, а в качестве берется также группа с внешне присоединенным нулем , где — факторгруппа группы k* по коммутанту. Эпиморфизм задается канонич. эпиморфизмом групп и условием . Очевидно, — единица полугруппы Теория О. над телом основана на следующей теореме. Существует единственное отображение удовлетворяющее следующим трем аксиомам: I) если матрица Вполучена из матрицы Аумножением слева одной строки на , то ; II) если Вполучена из Азаменой строки ai строкой ai+aj, где , то ; III) Элемент наз. определителем матрицы Аи обозначается det A. Для коммутативного тела аксиомы I), II), III) совпадают с условиями 1 а), 2), 3) соответственно, и, следовательно, в этом случае получаются обычные О. над полем. Если A = diag [an,...,а ап], то таким образом, отображение сюръективно. Матрица Аиз Mn(k).обратима тогда и только тогда, когда . Справедливо равенство . Как и в коммутативном случае, det Ане изменится, если строку а i матрицы Азаменить строкой , где При тогда и только тогда, когда Апроизведение элементарных матриц вида , . Если , то В отличие от коммутативного случая, det AT может и не совпадать с det А. Напр., для матрицы над телом кватернионов, а Бесконечные О., то есть О. бесконечных матриц, определяются как предел, к к-рому стремится О. конечной подматрицы при бесконечном возрастании ее порядка. Если этот предел существует, то О. наз. сходящимся, в противном случае — расходящимся. Понятие "О." восходит к Г. Лейбницу (G. Leibnitz, 1678); первая публикация принадлежит Г. Крамеру (G. Cramer, 1750). Теория О. создана трудами А. Ван-дермонда (A. Vandermonde), П. Лапласа (P. Laplace), О. Коши (A. Cauchy) и К. Якоби (С. Jacobi). Термин "О." встречается впервые у К. Гаусса (С. Gauss, 1801). Современное обозначение введено А. Кэли (A. Cayley, 1841). Лит.:[1] Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975; [2] Кострикин А. И., Введение в алгебру, М., 1977; [3] Ефимов Н. В., Розендорн Э. Р., Линейная алгебра и многомерная геометрия, М., 1970; L4] Тышкевич Р. И., Феденко А. С., Линейная алгебра и аналитическая геометрия, 2 изд., Минск, 1976;[5] А р т и н Э., Геометрическая алгебра, пер. с англ., М., 1969; М Б у р б а к и Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962; [7] Каган В. Ф., Основания теории определителей, Одесса, 1922. Д. А.

Орфографический словарь Лопатина:

орф.
определитель, -я

Толковый словарь Ожегова:

ОПРЕДЕЛИТЕЛЬ, я, м.
1. Устройство для определения чего-н., а также вообще то, с помощью чего можно что-н. точно определить, установить. Телефон с определителем номера. О. ритма.
2. Книга для справок при определении чего-н. (спец.). О. растений.

Грамматический словарь Зализняка:

Определитель, определители, определителя, определителей, определителю, определителям, определитель, определители, определителем, определителями, определителе, определителях

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru