Определение слова «Полугруппа»

Большая советская энциклопедия:

Полугруппа
Одно из основных понятий современной алгебры. П. называется множество с определённой на нём операцией, подчинённой закону ассоциативности (См. Ассоциативность). Понятие П. есть обобщение понятия группы (См. Группа): из аксиом группы остаётся лишь одна; этим объясняется и термин «П.». Примеры П. в математике весьма многочисленны. Это различные множества чисел вместе с операцией сложения или умножения, замкнутые относительно рассматриваемой операции (т. е. содержащие вместе с любыми двумя своими элементами их сумму или, соответственно, произведение), П. матриц относительно умножения, П. функций относительно операции умножения, П. множеств относительно операции пересечения или объединения и т.д. Один из простейших примеров П. — множество всех натуральных чисел относительно сложения; эта П. является частью (подполугруппой) группы целых чисел по сложению или, как говорят, вложима в группу целых чисел. Следует отметить, что далеко не всякая П. вложима в группу.
В общей теории и некоторых приложениях важен следующий пример П. Пусть Х — произвольное множество и пусть на множестве Fx всех конечных последовательностей элементов из Х определена операция *, заданная формулой
(x1,..., xn) * (y1,..., ym) = (x1,..., xn, y1,..., ym).
Тогда Fx относительно операции * является П.; она называется свободной П. на множестве X. Всякая П. есть гомоморфный образ (см. Гомоморфизм) некоторой свободной П.
Всякая совокупность преобразований произвольного множества М, замкнутая относительно операции композиции (последовательного выполнения), будет П. относительно этой операции; такова, в частности, совокупность всех преобразований множества М, называется симметрической П. на множестве М. Многие важные совокупности преобразований оказываются П., причём часто они не являются группами. С другой стороны, всякая П. изоморфна (см. Изоморфизм) некоторой П. преобразований. Таким образом, именно понятие П. оказывается наиболее подходящим для изучения в самом общем виде преобразований. В большой степени через рассмотрение преобразований осуществляются связи теории П. с другими областями математики, такими, например, как современная дифференциальная геометрия, функциональный анализ, абстрактно-алгебраическая теория автоматов.
Первые исследования, посвященные П., относятся к 20-м гг. 20 в. К концу 50-х гг. теория П. сформировалась в самостоятельную ветвь современной алгебры и продолжает активно разрабатываться. Изучением абстрактных (т. е. не зависящих от конкретной природы элементов) свойств всевозможных ассоциативных операций занимается т. н. алгебраическая теория П. Одна из главных её задач состоит в описании строения различных П., их классификации. Наложение на полугрупповую операцию тех или иных дополнительных ограничений выделяет ряд важных типов П., среди которых т. н. вполне простые П., инверсные П. и др. Заметную часть общей теории составляет теория представлений П. преобразованиями и матрицами. Внесение в П. дополнительных структур, согласованных с полугрупповой операцией, выделяет особые разделы теории П., таких, как, например, теория топологических П.
Лит.: Сушкевич А. К., Теория обобщенных групп, Хар. — К., 1937; Ляпин Е. С., Полугруппы, М., 1960; Клиффорд А. Х., Престон Г. Б., Алгебраическая теория полугрупп, пер. с англ., т. 1—2, М., 1972; Hofmann К., Mostert P., Elements of compact semigroups, Columbus (Ohio), 1966.
Л. Н. Шеврин.

Математическая энциклопедия:

Множество с одной бинарной операцией, удовлетворяющей закону ассоциативности. Понятие П. есть обобщение понятия группы:из аксиом группы остается лишь одна — ассоциативность; этим объясняется и термин "П.". П. называют иногда моноидами, но последний термин употребляется чаще всего для П. с сигнатурной единицей (т. е. с нульарной операцией, отмечающей единицу). Теория П. принадлежит к числу сравнительно молодых областей алгебры. Первые исследования, посвященные П., относятся к 20-м гг. 20 в. и связаны с именем А. К. Сушкевича. Он, в частности, определил строение ядра (наименьшего идеала) конечной П., т. е. фактически строение конечной П. без собственных идеалов. Этот результат позднее был обобщен Д. Рисом (D. Rees) на произвольные вполне простые полугруппы и усовершенствован посредством введения понятия матрицы над группой (см. Рисовская полугруппа матричного типа). Теорема Риса, к-рую можно считать нек-рым аналогом теоремы Веддерберна о простых алгебрах, принадлежит к числу основных фактов теории П. Другие ранние исследования по теории П. принадлежат А. Клиффорду (A. Clifford), одним из первых значительных достижений к-рого было введение и изучение П., покрываемых группами; эти П. наз. теперь вполне регулярными, или клиффордовыми полугруппами. К кон. 50-х гг. 20 в. теория П. сформировалась в самостоятельную ветвь современной алгебры с богатой проблематикой, разнообразными методами и тесными связями с многими областями математики как собственно алгебраическими (в первую очередь, с теорией групп и теорией колец), так и другими, напр. функциональным анализом (П. операторов в банаховых пространствах), дифференциальной геометрией (П. частичных преобразований), алгебраич. теорией автоматов (П. автоматов). Примеры П. чрезвычайно многочисленны. Это — различные множества чисел вместе с операцией сложения или умножения, замкнутые относительно рассматриваемой операции, П. матриц относительно умножения, П. функций относительно "поточечного" умножения *, задаваемого формулой (f* g)(x)=f(x) g(x), П. множеств относительно операции пересечения или объединения и т. д. В общей теории и нек-рых приложениях важен следующий пример П. Пусть X — произвольное множество. На множестве FX всех конечных последовательностей элементов из Xопределяется операция, задаваемая формулой Тогда FX относительно операции * является П.; она наз. свободной П. на множестве X. Всякая П. есть гомоморфный образ нек-рой свободной. Всякая совокупность преобразований произвольного множества М, замкнутая относительно операции композиции (последовательного выполнения, наз. также суперпозицией), будет П. относительно этой операции; такова, в частности, совокупность всех преобразований множества М, наз. симметрической полугруппой на множестве М. Многие важные совокупности преобразований оказываются П., причем часто они не являются группами. С другой стороны, всякая П. изоморфна нек-рой П. преобразований. Таким образом, именно понятие П. оказывается наиболее подходящим для изучения в самом общем виде преобразований, и в большой степени через рассмотрение преобразований осуществляются связи теории П. с другими областями математики. При этом очень часто П. возникают как П. эндоморфизмов (см. Эндоморфизмов полугруппа).тех или иных рассматриваемых систем: пространств, алгебр, графов и т. д. К П. приводит также рассмотрение частичных преобразований и бинарных отношений относительно операции умножения. Как и в других алгебраич. теориях, одной из главных задач теории П. является классификация всевозможных П., описание их строения. Это осуществляется прежде всего наложением на рассматриваемые П. различных ограничений и выделением тем самым различных типов П. Ограничения могут иметь разную природу. П. может удовлетворять фиксированной системе тождеств (типичные примеры — коммутативные П., П. идемпотентов) или другим условиям, выражаемым формулой узкого исчисления предикатов (примеры — П. с законом сокращения, регулярные П.). Закон сокращения и регулярность представляют собой примеры ограничений, носящих так или иначе характер ослабления свойств группы; введение подобных условий было, пожалуй, особенно популярно на первых порах развития теории П. (среди выделенных здесь типов, наиболее близких к группам, — правые группы). Во многих случаях, впрочем, возникающие на этом пути классы П. включают в себя П., весьма далекие по своим свойствам от групп (типичный пример — П. идемпотентов). Понятие регулярной полугруппы возникло по аналогии с понятием регулярного кольца. Класс регулярных П. принадлежит к числу наиболее интенсивно изучаемых в теории П. Он включает в себя следующие важные классы полугрупп: мультипликативные П. регулярных колец (и, в частности, П. всех матриц данного порядка над телом), симметрические П., П. всех частичных преобразований множеств, инверсные П., клиффордовы П. и, в частности, П. идемпотентов и вполне простые П., вполне 0-простые П. и др. Другой тип распространенных ограничений — ограничения на систему всех или нек-рых подполугрупп, в частности идеалов, а также нек-рых отношений на П., а частности конгруэнции. Так возникают, напр., разнообразные типы простых полугрупп и разнообразные условия конечности (см. с условием конечности, Периодическая полугруппа, Локально конечная полугруппа, финитно аппроксимируемая полугруппа, Минимальный идеал),II. с разными типами идеальных рядов и идеальных систем (см. Идеальный ряд, Нилъполугруппа};принципиальную роль в исследовании многих вопросов теории П. играют Грина отношения эквивалентности. Ограничения могут относиться к порождающим множествам и выделять их типы либо с точки зрения характера порождающих элементов (напр., идемпотенты; всякая П. вложима в идемпотентно порожденную П.) или их числа (конечно порожденные П. существенно участвуют во многих исследованиях), либо с точки зрения взаимодействия порождающих элементов — изучаются П., заданные определяющими соотношениями и, в частности, конечно определенные П. (см. Алгоритмическая проблема, с условием конечности), либо с объединенной точки зрения (см. напр., Бициклическая полугруппа). При изучении строения П. важную роль играют различные конструкции, сводящие описание рассматриваемых П. к тем или иным "более хорошим" типам. Довольно часто в качестве последних выступают группы, и принцип описания "по модулю групп" распространен в теоретико-полугрупповых исследованиях, он проявился еще в упоминавшейся классич. теореме Риса, согласно к-рой всякая вполне 0-простая (вполне простая) П. изоморфна регулярной рисовской П. матричного типа над группой с нулем (группой). Группы участвуют в конструкциях, описывающих инверсные П., и в конструкциях, описывающих коммутативные архимедовы полугруппы с законом сокращения и без идемпотентов. Описание П. с многими условиями конечности сводится к группам с соответствующими условиями. Среди конструкций, участвующих в описании П., имеются как общеалгебраические, напр. прямые произведения, подпрямые произведения, так и специфически теоретико-полугрупповые. К последним относятся уже упоминавшиеся рисовские П., а также ряд других, из к-рых следует упомянуть конструкцию связки — такого разбиения на подполугруппы, что соответствующее отношение эквивалентности есть конгруэнция. Среди связок особую роль играют коммутативные связки (или полурешетки) и матричные (прямоугольные) связки (см. Связка полугрупп). В терминах связок описываются многие типы П. Так, теорема Клиффорда о вполне регулярных П. означает, по существу, что яти П. исчерпываются полурешетками вполне простых П.; вполне простые П. — это в точности прямоугольные связки групп; теорема Тамуры — Кимуры утверждает, что любая коммутативная П. единственным образом разложима в связку архимедовых П. (см. [3]). Как и всюду в алгебре, существенную роль в теории П. играет понятие гомоморфизма и, соответственно, понятие конгруэнции. П. принадлежат к числу универсальных алгебр, конгруэнции к-рых не определяются однозначно нек-рым своим каноническим смежным классом ("ядром") подобно тому, как это, напр., имеет место в группах и кольцах. Эта более сложная ситуация привела к развитию довольно обширного направления теории П., посвященного изучению конгруэнций П. с различных точек зрения. Решаемые здесь задачи делятся в основном на два вида: 1) выделяются те или иные специальные типы конгруэнции на произвольных П.; 2) описываются все конгруэнции на тех или иных специальных П., принадлежащих важным в каком-то отношении классам П. К первому виду относится, в частности, рассмотрение главных конгруэнций (см. [3]), а также идеальных, или рисовских, конгруэнций, сопоставляемых каждому двустороннему идеалу (если I — идеал полугруппы S, то соответствующая рисовская конгруэнция имеет своими классами I и одноэлементные подмножества , где ), к-рые часто используются в различных вопросах и объясняют важность рассмотрения идеалов; факторполугруппу по рисовской конгруэнции наз. фактор полугруппой Риса по соответствующему идеалу. Из решенных задач второго вида следует отметить описание конгруэнции на симметрических П., на вполне 0-простых П.; весьма далеко продвинуто изучение конгруэнций на инверсных П.; изучение радикалов П. развивается не без влияния аналогичного раздела теории колец. Рассмотрение гомоморфизмов П. в П. с заданными "хорошими" свойствами способствовало формированию направления, занимающегося аппроксимацией (см. Сепаративная полугруппа, Финитно аппроксимируемая полугруппа). В исследованиях, связанных с рассмотрением подполугрупп, выделяется самостоятельное направление, посвященное изучению решеточных свойств П., т. е. взаимосвязей между свойствами П. и свойствами решеток их подполугрупп (см. Решетка подалгебр). Широкое направление теории П. посвящено изучению различных вложений П. Истоки этого направления восходят к классич. проблеме вложения полугрупп в группы. О нек-рых задачах и результатах этого направления см. в ст. Расширение полугруппы. Интенсивно развивается теория многообразий П.; об исследованиях в этом направлении см. в ст. Полугрупп многообразие. Начинает развиваться теория квазимногообразий П. (см. Алгебраических систем квазимногообразие).и нек-рых других классов П., близких в том или ином смысле к многообразиям. Связи общей теории П. с конкретными П. осуществляются многими путями. Решаются проблемы абстрактной характеризации тех или иных важных конкретных П. (напр., П. преобразований: известно, в частности, несколько характеризации симметрических П.), описываются различные их абстрактные свойства. О нек-рых основных результатах, касающихся П. преобразований, см. Преобразований полугруппа. Изучаются изоморфизмы и гомоморфизмы абстрактных П. в различные конкретные П., прежде всего П. преобразований и II. матриц (см. Представление полугруппы). Исследованием гомоморфизмов П. в нек-рые числовые П., прежде всего в мультипликативную П. комплексных чисел, занимается теория характеров полугрупп. К специальным разделам теории П. приводит рассмотрение П. с дополнительными структурами, согласованными с операцией умножения. Здесь следует, в первую очередь, отметить структуру топологич. пространстве (см. Топологическая полугруппа).и структуру порядка, частичного или линейного (см. Упорядоченная полугруппа). Развивается и теория нек-рых видов обобщенных II. В первую очередь это алгебры с одной n-арной операцией, подчиненной обобщенному ассоциативному закону (их наз. n-ассоциативами, или п- полугруппами). Рассматриваются также алгебры с одной частичной ассоциативной бинарной операцией (одна из естественных ситуаций подобного рода возникает в теории категорий). Лит.:[1] Суткевич А. К., Теория обобщенных групп, Хар.-К., 1937; [2] Ляпин Е. С., Полугруппы, М., 1960: [3] Клиффорд А., Престон Г., Алгебраическая теория полугрупп, пер. с англ., т. 1-2, М., 1972; [41 Алгебраическая теория автоматов, языков и полугрупп, пер. с англ., М., 1975; [5] Фукс Л., Частично упорядоченные алгебраические системы, пер. сангл., М., 1965; [6] Итоги науки. Алгебра. Топология. 1962, М., 1963, с. 33-58; [7] Итоги науки. Алгебра. 1964, М., 1966, с. 164-202; [8] Итоги науки. Алгебра. Топология. Геометрия. 1966, М., 1968, с. 9-56; [9] Semigroups, N.Y.- L., 1969; [10] Ноwie J., An introduction to semigroup theory, L.-N.Y.-S.F., 1976; [11] Petrich M., Introduction to semigroups, Columbus, 1973; [12] его же, Lectures in semigroups, В., 1977; [13] Redei L., The theory of finitely generated commutative semigroups, Oxf.-[a.o.], 1965; [14] Hofmann К. Н., Mоstert P. S., Elements of compact semigroups, Columbus, 1966; [15] Lalleinent G., Semigroups and combinatorial applications, N.Y.-[a.o.], 1979; [16] Eilenberg S., Automata, languages and machines, N.Y.-S.F.-L., v. .A, 1974; v. В., 1976. Л. Н. Шеврин.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru