Определение слова «АНИЗОТРОПИЯ»

Большой энциклопедический словарь:

АНИЗОТРОПИЯ (от греч. anisos — неравный и tropos — направление)зависимость свойств среды от направления. Анизотропия характерна, напр., для механических, оптических, магнитных, электрических и др. свойств кристаллов.

Биологический энциклопедический словарь:

(от греч. anisos— неравный и tropos — направление) в ботанике, способность разных органов одного и того же растения принимать разл. положения при одинаковом воздействии факторов внеш. среды. Напр,, при одностороннем освещении растений, верхушки побегов изгибаются по направлению к источнику света, а листовые пластинки располагаются перпендикулярно к направлению лучей.

Большая советская энциклопедия:

Анизотропия
(от греч. nisos — неравный и trроs — направление)
зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии (См. Изотропия) — независимости свойств от направления). Примеры А.: пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль ниткиэтих направлениях прочность ткани наименьшая).
Естественная А. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы Кварца, кубики каменной соли, восьмиугольные кристаллы Алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. А. остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже Симметрия кристаллов.
При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1, а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1, б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (//) и перпендикулярно этой оси () различны по величине и знаку.
Таблица 1. — Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении
----------------------------------------------------------------------------------------------------
|                               | //·106, град-4            | ·106, град-4            |
|--------------------------------------------------------------------------------------------------|
| Олово                    | 30,5                         | 15,5                         |
|--------------------------------------------------------------------------------------------------|
| Кварц                     | 13,7                         | 7,5                           |
|--------------------------------------------------------------------------------------------------|
| Графит                  | 28,2                         | —1,5                        |
|--------------------------------------------------------------------------------------------------|
| Теллур                   | —1,6                        | 27,2                         |
----------------------------------------------------------------------------------------------------
Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии // и перпендикулярно ей .
Таблица 2. — Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м)
----------------------------------------------------------------------------------------------------
|                               | //·106, ом·см            |  ом·см                  |
|                               |------------------------------------------------------------------|
| Магний                   | 3,37                         | 4,54                         |
|--------------------------------------------------------------------------------------------------|
| Цинк                      | 5,83                         | 5,39                         |
|--------------------------------------------------------------------------------------------------|
| Кадмий                  | 7,65                         | 6,26                         |
|--------------------------------------------------------------------------------------------------|
| Олово (белое)        | 13,13                       | 9,05                         |
----------------------------------------------------------------------------------------------------
При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает Двойное лучепреломление и поляризуется различно в разных направлениях (оптическая А.). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах Кварца, Рубина и Кальцита) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n// и перпендикулярно ей n равны: n// = 1,64 и n = 1,58; у кварца: n// = 1,53, n = 1,54.
Механическая А. состоит в различии механических свойств — прочности, твёрдости, вязкости, упругости — в разных направлениях. Количественно упругую А. оценивают по максимальному различию модулей упругости (См. Упругости модули). Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).
Таблица 3. — Главные значения модулей упругости некоторых кубических кристаллов
----------------------------------------------------------------------------------------------------
| Алмаз            | 95                    | 39                    | 49                    |
|---------------------------------------------------------------------------------------------------|
| Алюминий      | 10,8                 | 6,2                   | 2,8                   |
|---------------------------------------------------------------------------------------------------|
| Железо          | 24,2                 | 14,6                 | 11,2                 |
----------------------------------------------------------------------------------------------------
Для кристаллов более сложной структуры (более низкой симметрии) полное описание упругих свойств требует знания ещё большего числа значений (компонент) модулей упругости по разным направлениям, например для цинка или кадмия — 5, а для триглицинсульфата или винной кислоты — 13 компонент, различных по величине и знаку. Об А. магнитных свойств см. подробнее в статье Магнитная анизотропия.
Математически анизотропные свойства кристаллов характеризуются Векторами и Тензорами, в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество) является вектором. Электрическое сопротивление, Диэлектрическая проницаемость, Магнитная проницаемость и Теплопроводность — тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество)тензор третьего ранга, Упругостьтензор четвёртого ранга. А. графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2—5).
Поликристаллические материалы (Металлы, Сплавы), состоящие из множества кристаллических зёрен (кристаллитов (См. Кристаллиты)), ориентированных произвольно, в целом изотропны или почти изотропны. А. свойств поликристаллического материала проявляется, если в результате обработки (Отжига, прокатки (См. Прокатка) и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает А. (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15—20% (до 65%).
Причиной естественной А. является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы). А. может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная А. некоторых жидкостей, особенно А. жидких кристаллов (См. Жидкие кристаллы). В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.
А. наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм2. Искусственную А. можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём А., которая влечёт за собой упрочнение стекла.
Искусственная оптическая А. возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление (См. Керра эффект) в жидкостях), магнитного поля (см. Коттон—Мутона эффект (См. Коттона — Мутона эффект)), механического воздействия (см. Фотоупругость).
М. П. Шаскольская.
А. широко распространена также в живой природе. Оптическая А. обнаруживается в некоторых животных тканях (мышечной, костной). Так, Миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.
В ботанике А. называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.
Лит.: Бокий Г. Б., Флинт Е. Е., Шубников А. В., Основы кристаллографии, М.—Л., 1940; Най Дж., Физические свойства кристаллов..., пер. с английского, 2 изд., М., 1967; Волокнистые композиционные материалы, пер. с английского, М., 1967; Дитчберн Р., Физическая оптика, пер. с английского, М., 1965.

Рис. 1. Изменение формы кристаллического шара (пунктир) при нагревании.

Рис. 2. Сечение поверхности скоростей упругих волн кристалла бромистого калия.

Рис. 3. Сечения поверхностей коэффициентов упругости кристалла сегнетовой соли.

Рис. 4. Сечения поверхности модуля кручений (а) и модуля Юнга (б) кристалла кварца; сечение поверхности пьезоэлектрического коэффициента в кварце (в).

Рис. 5. Поверхность коэффициентов разрывной прочности кристалла каменной соли.

Большой словарь иностранных слов:

[гр. неравный + свойство; поворот] – 1) неодинаковость физических свойств тела (например, теплопроводности, электропроводности, скорости распространения света) по различным направлениям внутри этого тела; 2) бот. неодинаковое положение различных органов растения под воздействием одного и того же внешнего фактора (например, горизонтальное положение к падающему свету у листьев и вертикальное – у стеблей)

Горная энциклопедия:

Горных пород (от греч. anisos — неравный и tropos — направление * a. anisotropy of rocks; н. Anisotropie von Gesteinen; ф. anisotropic des roches; и. anisotropia de las rocas) — различие значений свойств (деформационных, электрич., тепловых, магнитных, оптич. и др.) г. п. по разным направлениям. A. минералов и г. п. связана c микрослоистостью, упорядоченной ориентировкой зёрен и кристаллов и микротрещиноватостью. A. массивов г. п. определяется упорядоченным залеганием больших структурных элементов, разделённых тектонич. разрывами, слоистостью или упорядоченной макротрещиноватостью. При ведении горн. работ, выборе способов разрушения наибольшее значение имеет A. деформац. свойств, определяемая как отношение пределов прочности (или модулей деформации) при сжатии и растяжении образцов перпендикулярно и параллельно напластованию. Hапр., отношение модулей деформации для угля 1,22, песчаника 1,28, алевролита 1,61.

Орфографический словарь Лопатина:

орф.
анизотропия, -и

Физический энциклопедический словарь:

(от греч. anisos — неравный и tropos — направление), зависимость физ. св-в (механич., оптич., магн., электрич. и т. д.) в-ва от направления. Естеств. А.— характерная особенность кристаллов; напр.. пластинка слюды легко расщепляется на тонкие листочки только вдоль оп-

Рис. 1. Сечения координатными плоскостями указат. поверхностей (оси x1 x2, x3) коэфф. растяжения (внутр. поверхность) и коэфф. кручения (внеш. поверхность) кристалла сегнетовой соли.
редел. плоскости (параллельно этой плоскости силы сцепления между ч-цами слюды наименьшие). Не анизотропны, т. е. не зависят от направления, лишь немногие св-ва кристаллов, напр. плотность и уд. теплоёмкость. А. физ. св-в кристалла тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов.

Рис. 2. Сечения указат. поверхностей модуля сдвига (а), модуля Юнга (б) и пьезоэлектрич. коэффициента (в) кристалла кварца.
Напр., при распространении света в прозрачных кристаллах (кроме кристаллов с кубич. решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях. При этом в кристаллах с гексагональной, тригональной и тетрагональной структурами (кварц, рубин, кальцит) двойное лучепреломление максимально в направлении, перпендикулярном к гл. оси симметрии и отсутствует вдоль этой оси (см. КРИСТАЛЛООПТИКА).
А. многих св-в кристалла, напр. коэфф. линейного теплового расширения а, электропроводности, упругих св-в, характеризуют значениями соответствующих констант вдоль гл. оси симметрии (индекс ||) и перпендикулярно ей (+).
Табл. 1. ТЕМПЕРАТУРНЫЕ КОЭФФИЦИЕНТЫ ЛИНЕЙНОГО РАСШИРЕНИЯ НЕКОТОРЫХ КРИСТАЛЛОВ

А. упругих св-в оценивают по гл. значениям модулей упругости (см. табл. 2).
Табл. 2. ГЛАВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ УПРУГОСТИ НЕКОТОРЫХ КУБИЧЕСКИХ КРИСТАЛЛОВ ВДОЛЬ ТРЁХ РЁБЕР КУБА, 1011 дин/см2

Для кристаллов более низкой симметрии полное описание упругих св-в требует знания большего числа компонент модулей упругости по разным направлениям, напр. для цинка или кадмия — пяти, а для триглицинсульфата или винной кислоты — тринадцати компонент, разл. по величине и знаку. Об А. магн. св-в см. в ст. (см. МАГНИТНАЯ АНИЗОТРОПИЯ).
Математически анизотропные св-ва кристаллов характеризуются векторами и тензорами. Напр., коэфф. пироэлектрич. эффекта (см. ПИРОЭЛЕКТРИЧЕСТВО)вектор; электрич. сопротивление, диэлектрич. и магн. проницаемости, теплопроводность — тензоры 2-го ранга; коэфф. пьезоэлектрич. эффекта (см. ПЬЕЗОЭЛЕКТРИЧЕСТВО)тензор 3-го ранга; модули упругости — тензоры 4-го ранга. Графически А. изображают с помощью указательных поверхностей (индикатрис, рис. 1,2).
Причина А. кристаллов — упорядоченное расположение в них ч-ц.
А. нек-рых жидкостей, особенно жидких кристаллов, объясняется асимметрией и определ. ориентацией молекул.
оликрист. материалы в целом изотропны. А. св-в в них проявляется, если в результате обработки (отжига, прокатки и т. п.) в них создана текстура. Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает А. (гл. обр. механич. св-в).
А. наблюдается также и в некрист. в-вах, у к-рых существует естеств. (древесина и др.) или искусств. текстура. Напр., при закалке стекла можно получить А., к-рая влечёт за собой его упрочнение. Искусственная оптич. А. возникает в кристаллах и в изотропных средах под действием электрич, поля (см. ПОККЕЛЬСА ЭФФЕКТ,КЕРРА ЭФФЕКТ), магн. поля (см. КОТТОНА — МУТОНА ЭФФЕКТ), механич. воздействия (см. ФОТОУПРУГОСТЬ).

Грамматический словарь Зализняка:

Анизотропия, анизотропии, анизотропии, анизотропий, анизотропии, анизотропиям, анизотропию, анизотропии, анизотропией, анизотропиею, анизотропиями, анизотропии, анизотропиях

Энциклопедический словарь Брокгауза и Ефрона:

Это неравномерная геотропическая реакция стебля и корня (Sachs, "Arbeit, d. Wurzburg. Instituts", 1879, т. 2, стр. 226).

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru