Определение слова «Аналитическая геометрия»

Большой энциклопедический словарь:

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯраздел геометрии, в котором свойства геометрических образов (точек, линий, поверхностей) устанавливаются средствами алгебры при помощи метода координат, т. е. путем изучения свойств уравнений, графиками которых эти образы являются. В аналитической геометрии исследуются линии (поверхности) 1-го и 2-го порядков. Линии (поверхности) 1-го порядка — прямые (плоскости); среди линий (поверхностей) 2-го порядка — эллипсы, гиперболы, параболы (эллипсоиды, гиперболоиды, параболоиды). Аналитическую геометрию впервые изложил в 1-й пол. 17 в. Р. Декарт.

Большая советская энциклопедия:

Аналитическая геометрия
Раздел геометрии. Основными понятиями А. г. являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности второго порядка). Основными средствами исследования в А. г. служат метод координат (см. ниже) и методы элементарной алгебры. Возникновение метода координат тесно связано с бурным развитием астрономии, механики и техники в 17 в. Отчётливое и исчерпывающее изложение этого метода и основ А. г. было сделано P. Декартом в его «Геометрии» (1637). Основные идеи метода были известны также его современнику П. Ферма. Дальнейшая разработка А. г. связана с трудами Г. Лейбница, И. Ньютона и особенно Л. Эйлера. Средствами А. г. пользовался Ж. Лагранж при построении аналитической механики и Г. Монж в дифференциальной геометрии. Ныне А. г. не имеет самостоятельного значения как наука, однако её методы широко применяются в различных разделах математики, механики, физики и др. наук.
Сущность метода координат заключается в следующем. Рассмотрим, например, на плоскости две взаимно перпендикулярные прямые Ox и Оу (рис. 1). Эти прямые с указанным на них направлением, началом координат О и выбранной масштабной единицей е образуют т. н. декартову прямоугольную систему координат Оху на плоскости. Прямые Ox и Оу называются соответственно осью абсцисс и осью ординат. Положение любой точки М на плоскости по отношению к этой системе Оху можно определить следующим образом. Пусть Mx и My — проекции М на Ox: и Оу, а числа х и y — величины отрезков OMx и ОМу (величина х отрезка OMx, например, равна длине этого отрезка, взятой со знаком плюс, если направление от О к Mx совпадает с направлением на прямой Ox, и со знаком минус в противоположном случае). Числа х и у называются декартовыми прямоугольными координатами точки М в системе Оху. Обычно они называются соответственно абсциссой и ординатой точки M. Для обозначения точки М с абсциссой х и ординатой у пользуются символом М(х,у). Ясно, что координаты точки М определяют её положение относительно системы Оху.
Пусть на плоскости с данной декартовой прямоугольной системой координат Оху задана некоторая линия L. Используя понятие координат точек, можно ввести понятие уравнения данной линии L относительно системы Оху как соотношения вида F(x,y) = 0, которому удовлетворяют координаты х и у любой точки M, расположенной на L, и не удовлетворяют координаты каждой точки, не лежащей на L. Если, например, линия L является окружностью радиуса R с центром в начале координат O, то уравнение x2+ y2 — R2 = 0 будет уравнением рассматриваемой окружности, в чём можно убедиться, обратившись к рис. 2. Если точка М лежит на окружности, то по теореме Пифагора для треугольника OMMx получается x2 + y2 — R2 = 0. Если же точка не лежит на окружности, то, очевидно, x2 + y2 — R2 0. Итак, линии L на плоскости можно сопоставить её уравнение F(x,y) = 0 относительно системы координат Оху.
Основная идея метода координат на плоскости состоит в том, что геометрические свойства линии L выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения F(x,y) = 0 этой линии. Например, применим метод координат для выяснения числа точек пересечения окружности С радиуса R и данной прямой линии В (рис. 3). Пусть начало системы координат Оху находится в центре окружности, а ось Ox направлена перпендикулярно прямой В. Так как прямая В перпендикулярна оси Ox, то абсцисса любой точки этой прямой равна некоторой постоянной a. Т. о., уравнение прямой В имеет вид x — a = 0. Координаты (x, y) точки пересечения окружности С (ур-ние которой имеет вид x2 + y2 — R2 = 0) и прямой В удовлетворяют одновременно уравнениям
x2 + y2 — R2 = 0, х — а = 0, (1)
то есть являются решением системы (1). Следовательно, геометрический вопрос о числе точек пересечения прямой и окружности сводится к аналитическому вопросу о числе решений алгебраической системы (1). Решая эту систему, получают х = a, у = ± R2 — a2. Итак, окружность и прямая могут пересекаться в двух точках (R2 > a2) (этот случай изображен на рис. 3), могут иметь одну общую точку (R2 = a2) (в этом случае прямая В касается окружности C) и не иметь общих точек (R2 < a2) (в этом случае прямая В лежит вне окружности C).
В А. г. на плоскости подробно изучаются геометрические свойства Эллипса, гиперболы (См. Гипербола) и параболы (См. Парабола), представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину (см. Конические сечения). Эти линии часто встречаются во многих задачах естествознания и техники. Например, движение материальной точки под воздействием центрального поля силы тяжести происходит по одной из этих линий; в инженерном деле для конструирования прожекторов, антенн и телескопов пользуются важным оптическим свойством параболы, заключающимся в том, что лучи света, исходящие из определённой точки (фокуса параболы), после отражения от параболы образуют параллельный пучок.
В А. г. на плоскости систематически исследуются т. н. алгебраические линии первого и второго порядков (эти линии в декартовых прямоугольных координатах определяются соответственно алгебраическими уравнениями первой и второй степени). Линии первого порядка суть прямые, и обратно, каждая прямая определяется алгебраическим уравнением первой степени Ax + By + С = 0. Линии второго порядка определяются уравнениями вида Ax2 + Вху + Су2 + Dx + Еу + F = 0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Можно доказать, что таким способом уравнение любой вещественной линии второго порядка может быть приведено к одному из следующих простейших видов:

Первое из этих уравнений определяет эллипс, второе — гиперболу, третье — параболу, а последние два — пару прямых (пересекающихся, параллельных или слившихся).
В А. г. в пространстве также пользуются методом координат. При этом декартовы прямоугольные координаты .x, у и z (абсцисса, ордината и апликата) точки М вводятся в полной аналогии с плоским случаем (рис. 4). Каждой поверхности S в пространстве можно сопоставить её уравнение F (x, y, z) =0 относительно системы координат Oxyz. (Так, например, уравнение сферы радиуса R с центром в начале координат имеет вид x2 + y2 + z2 — R2 = 0.) При этом геометрические свойства поверхности S выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения этой поверхности. Линию L в пространстве задают как линию пересечения двух поверхностей S1 и S1. Если F1(x, y, z) = 0 и F2(x, y, z) = 0 — уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Например, прямую L в пространстве можно рассматривать как линию пересечения двух плоскостей. Так как плоскость в пространстве определяется уравнением вида Ax + By + Cz + D = 0, то пара уравнений такого вида, рассматриваемая совместно, представляет собой уравнение прямой L. Т. о., метод координат может применяться и для исследования линий в пространстве. В A. г. в пространстве систематически исследуются т. н. алгебраические поверхности первого и второго порядков. Выясняется, что алгебраическими поверхностями первого порядка являются лишь плоскости. Поверхности второго порядка определяются уравнениями вида:
Ax2 + By2 + Cz2 + Dxy + Eyz + Fxz + Gx + Ну + Mz + N = 0.
Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Важнейшими вещественными поверхностями второго порядка являются Эллипсоиды, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический Параболоиды. Эти поверхности в специально выбранных декартовых прямоугольных системах координат имеют следующие уравнения:





Перечисленные важнейшие поверхности второго порядка часто встречаются в различных вопросах механики, физики твёрдого тела, теоретической физике и инженерном деле. Так, при изучении напряжений, возникающих в твёрдом теле, пользуются понятием т. н: эллипсоид напряжений. В различных инженерных сооружениях применяются конструкции в форме гиперболоидов и параболоидов.
Лит.: Декарт Р., Геометрия, [пер. с франц.], М.—Л., 1938; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966; Ефимов Н. В., Краткий курс аналитической геометрии, 9 изд., М., 1967; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1967; Александров П. С., Лекции по аналитической геометрии, М., 1968; Бахвалов С. В., Моденов П. С., Пархоменко А. С., Сборник задач по аналитической геометрии, 3 изд., М., 1964; Клетеник Д. В., Сборник задач по аналитической геометрии, 9 изд., М., 1967.
Э. Г. Позняк.

Рисунки 1, 2, 3 к ст. Аналитическая геометрия.

Рис. 4. к ст. Аналитическая геометрия.

Математическая энциклопедия:

Раздел геометрии. Основными понятиями А. г. являются простейшие геометрич. образы (точки, прямые, плоскости, кривые и поверхности 2-го порядка). Основными средствами исследования в А. г. служат метод координат и методы элементарной алгебры. Возникновение метода координат тесно связано с бурным развитием астрономии, механики н техники в 17 в. Отчетливое и исчерпывающее изложение этого метода и основ А. г. было сделано Р. Декартом (R. Dercartes) в его "Геометрии" (1637). Основные идеи метода были известны также его современнику П. Ферма (P. Fermat). Дальнейшая разработка А. г. связана с трудами Г. Лейбница (G. Leibniz), И. Ньютона (I. Newton) и особенно Л. Эйлера (L. Euler). Средствами А. г. пользовался Ж. Лагранж (J. Lagran-ge) при построении аналитич. механики, Г. Монж (G. Monge) в дифференциальной геометрии. Ныне А. г. не имеет самостоятельного значения как наука, однако ее методы широко применяются в различных разделах математики, механики, физики и др. наук. Сущность метода координат заключается в следующем. Рассмотрим, напр., на плоскости л две взаимно перпендикулярные прямые Ох и Оу. Эти прямые с указанным на них направлением, началом координат Ои выбранной масштабной единицей еобразуют так наз. декартову прямоугольную систему координат Оху на плоскости. Прямые Ох и Оу наз. соответственно осью абсцисс и осью ординат. Положение любой точки Мна плоскости по отношению к этой системе Оху можно определить следующим образом. Пусть М х и My — проекции Мна Ох и Оу, а числа хи у- величины отрезков ОМ х и ОМ у (величина хотрезка ОМ x , напр., равна длине этого отрезка, взятой со знаком плюс, если направление от О к М х совпадает с направлением на прямой Ох, и со знаком минус — в противоположном случае). Числа z (абсцисса) и у(ордината) наз. декартовыми прямоугольными координатами точки Мв системе Оху. Для обозначения точки М с абсциссой хи ординатой упользуются символом М( х, у). Ясно, что координаты точки Мопределяют ее положение относительно системы Оху. Пусть на плоскости я с данной декартовой прямоугольной системой координат Оху задана нек-рая линия L. Используя понятие координат точек, можно ввести понятие уравнения данной линии Lотносительно системы Оху как соотношения вида F(x, у) = 0, к-рому удовлетворяют координаты хи улюбой точки М, расположенной на L, и не удовлетворяют координаты каждой точки, не лежащей на L. Основная идея метода координат на плоскости состоит в том, что геометрич. свойства линии Lвыясняются путем изучения аналитич. и алгебраич. средствами свойств уравнения F(x, y)=0 этой линии. Напр., геометрич. вопрос о числе точек пересечения прямой и окружности сводится аналитич. вопросу о числе решений алгебраич. системы уравнений прямой и окружности. В А. г. на плоскости подробно изучаются геометрич. свойства эллипса, гиперболы и параболы, представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину (см. Конические сечения). В А. г. на плоскости систематически исследуются так наз. алгебраические линии 1-го и 2-го порядков; эти линии в декартовых прямоугольных координатах определяются соответственно алгебраич. уравнениями 1-й и 2-й степеней. Линии 1-го порядка суть прямые и обратно, каждая прямая определяется алгебраич. уравнением 1-й степени Ах+Ву+С=0. Линии 2-го порядка определяются уравнениями вида Ax2+Bxy+Cy2+Dx+Ey+F=0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в к-рой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения. См. Линии второго порядка. В А. г. в пространстве декартовы прямоугольные координаты х, у и z (абсцисса, ордината и аппликата) точки Мвводятся в полной аналогии с плоским случаем. Каждой поверхности Sв пространстве можно сопоставить ее уравнение F(x, у,z)=0 относительно системы координат Oxyz. При этом геометрич. свойства поверхности S выясняются путем изучения аналитич. и алгебраич. средствами свойств уравнения этой поверхности. Линию Lв пространстве задают как линию пересечения двух поверхностей S1 и S2. Если F1(x, у,z) = 0 и Р 2 (х, у, z) = 0 — уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Напр., прямую Lв пространстве можно рассматривать как линию пересечения двух плоскостей. В А. г. в пространстве систематически исследуются так наз. алгебраические поверхности 1-го и 2-го порядков. Выясняется, что алгебраич. поверхностями 1-го порядка являются лишь плоскости. Поверхности 2-го порядка определяются уравнениями вида: Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в к-рой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения. См. Поверхности второго порядка. Лит.: [1] Декарт Р., Геометрия, пер. с франц. и латин., М.- Л., 1938; [2] Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966; [3] Ефимо в Н. В., Краткий курс аналитической геометрии, 9 изд., M., 1967; [4] Ильин В. А., Позняк Э. Г., , М., 1968; [5] Александров П. С., Лекции по аналитической геометрии..., М., 1968; [6] Постников М. М., , М., 1973; [7] Бахвалов С. В., Моденов П. С., Пархоменко А. С., Сборник задач по аналитической геометрии, 3 изд., М., 1964. Э. Г. Позняк.

Научно-технический словарь:

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, см. КООРДИНАТНАЯ ГЕОМЕТРИЯ.

Энциклопедический словарь Брокгауза и Ефрона:

См. Геометрия.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru