Определение слова «Кватернион»

Большой энциклопедический словарь:

КВАТЕРНИОН (от лат. quaterni — по четыре) — обобщение понятия комплексного числа. Кватернион имеет вид: a+bi+cj+dk, где a, b, c, d — действительные числа, а i, j, k — три специальные единицы, аналогичные мнимой единице. Для кватерниона справедливы все основные законы действий, кроме коммутативности умножения.

Математическая энциклопедия:

Гиперкомплексное число, геометрически реализуемое в четырехмерном пространстве. Система К. предложена в 1843 У. Гамильтоном (W. Hamilton). К. явились исторически первым примером гицеркомплексной системы, возникшей при попытках найти обобщение комплексных чисел. Комплексные числа изображаются геометрически точками плоскости, и действия над ними соответствуют простейшим геометрич. преобразованиям плоскости. Из точек пространства трех и выше измерений нельзя "устроить" числовую систему, подобную полю действительных или комплексных чисел. Однако, если отказаться от коммутативности умножения, то из точек 4-мерного пространства можно устроить числовую систему (в пространстве трех, пяти и выше измерений нельзя построить даже такую систему). К. образуют 4-мерную алгебру над полем действительных чисел с базой 1, i, j, k("базисные единицы") и следующей таблицей умножения "базисных единиц":1Х1 =11Х i = i1 Хj = j1 Хk = kiХ1 = iiХ i = -1iХj = kiХk =-jjХ1 = jj Хj=-kjХj =-1jХ k=ikХ1 = kkХ i=jkХj = -ik Хk= -1. Всякий К. может быть записан в виде или (поскольку 1 играет роль обычной единицы и в записи К. может быть опущена) в виде Различаются скалярная часть К. х 0 и векторная часть так что X=x0+V. Если х 0=0, то кватернион Vназ. вектором, и он может отождествляться с обычным 3-мерным вектором, поскольку умножение в алгебре К. двух таких векторов V1 и V2 связано со скалярным (V1, V2) и векторным [V1, V2]произведениями векторов Vx и V2 в 3-мерном пространстве формулой Это прказывает тесную связь К. с векторным исчислением. Исторически последнее и возникло из теории К. Всякому К. X=x0+V сопоставляется сопряженный кватернион Х=х 0-V, при этом Это действительное число наз. нормой кватерниона Xи обозначается N(X). Норма К. удовлетворяет соотношению Любое вращение 3-мерного пространства вокруг начала координат может быть задано при помощи кватерниона Рс нормой 1. Вращение, соответствующее Р, переводит вектор X = x1i+x2j+x3k в вектор Y=y1i+ у 2j+у 3k=РХР-1. Алгебра К. является единственной ассоциативной, но не коммутативной, конечномерной нормированной алгеброй над полем действительных чисел, обладающей единицей. Алгебра К.- тело, т. е. в ней определено деление, причем К., обратным к К. X, является X. Тело К. единственная конечномерная действительная ассоциативная, но не коммутативная алгебра без делителей нуля (см. также Фробениуса теорема). Лит.:[1] Калужнин Л. А., Введение в общую алгебру, М., 1973; [2] Кантор И. Л., Солодовников А. С, Гиперкомплексные числа, М., 1973; [3] Курош А. Г., Лекции по общей алгебре, 2 изд., М., 1973. Н. Н. Вильямс.

Орфографический словарь Лопатина:

орф.
кватернион, -а

Словарь синонимов русского языка:

сущ.

число

Грамматический словарь Зализняка:

Кватернион, кватернионы, кватерниона, кватернионов, кватерниону, кватернионам, кватернион, кватернионы, кватернионом, кватернионами, кватернионе, кватернионах

Энциклопедический словарь Брокгауза и Ефрона:

Исчисление К., основанное Вильямом-Ровэном Гамильтоном (см.), представляет собою теорию векторов (см.), основанную на выражении вектора тричленом вида xi + yj + zk, в котором x, y, z суть величины проекций вектора на ортогональные оси координат, а i, j, k — символы, обозначающие мнимые величины особого рода, обладающие следующими свойствами:
A) Квадраты их равны минус единице, т. е. i2= -1, j2= -1, k2= -1.
B) Произведение двух из них равно третьей, взятой со знаком + или -, в зависимости от порядка множителей, а именно:
ij = k, ji = -k
jk = i, kj = -i
ki = j, ik = -j.
Алгебраические действия сложения и вычитания над такими выражениями векторов дают выражения геометрической суммы и геометрической разности (см.) векторов, а через умножение вектора = xi + yj + zk на другой вектор 1 = х1i + y1j + z1k получается на основании свойств А и B следующее выражение:
s + fi + gj + hk..... (С)
в котором:
s = -(хх1 + yy1 + zz1)
f = yz1 — zy1
g = zx1 — xz1
h = xy1 - yx1
Означим через r и r, длины обоих векторов, через угол между их направлениями; представим себе, что оба вектора проведены из начала координат и что из него восстановлен перпендикуляр в такую сторону, чтобы наблюдателю, стоящему в начале координат, головою по направлению перпендикуляра, вращение направления r на угол до совмещения с направлением r1 казалось бы совершающимся справа налево. Означим через l, m, n косинусы углов, составляемых направлением вышесказанного перпендикуляра с осями координат.
Известно, что хх1 + yy1 + zz1 = rr1cos и что
f = -lrr1sin
g = -mrr1sin
h = -nrr1sin
поэтому
1 = -rr1cos — rr1sin, где
= li+ mj + nk.
Следовательно, произведение 1 есть четырехчленное выражение, первый член которого есть отрицательно взятое геометрическое произведение (rr1cos) обоих векторов, а сумма остальных трех членов есть выражение вектора, изображающего линейный момент вокруг начала координат вектора r1, отложенного от конца вектора r. Четырехчленное выражение вида (С) назвал Гамильтон К.; первый, невекториальный член s кватерниона наз. scalar, сумма остальных трех членов наз. вектором. В учении о К. рассматриваются различные действия над К. и делается применение теории их к геометрии, механике и математической физике. Ср. W. R. Hamilton, "Elemente der Quaternionen" (нем. излож. Paul Glan, Лпц., 1882); Tait, "An Elementary Treatise on Quaternions"; P. Kelland and P. G. Tait, "Introduction to Quaternions".
Д. Б.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru