Определение слова «КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА»

Большой энциклопедический словарь:

КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА — квантовая теория электромагнитного поля и его взаимодействия с заряженными частицами (главным образом электронами и позитронами, мюонами). В основе квантовой электродинамики лежит подтвержденное на опыте представление о дискретности электромагнитного излучения. Кванты электромагнитного поля — фотоны — являются носителями минимально возможных при данной частоте n поля энергии и импульса — где — Планка постоянная,?=c/? — длина волны, с — скорость света. Таким образом, электромагнитному излучению присущи не только волновые (характеризуемые величинами ? и ?) — но и дискретные, корпускулярные свойства. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов. Обмен фотонами обусловливает электромагнитное взаимодействие заряженных частиц. Частица может испустить фотоны, а затем сама их поглотить; такое самодействие, или взаимодействие заряженной частицы с собственным полем, приводит к наблюдаемым эффектам: лэмбовскому сдвигу уровней энергии в атомах, поправках к сечениям рассеяния и др. Квантовая электродинамика чрезвычайно точно описывает все относящиеся к области ее компетенции явления: испускание, поглощение и рассеяние излучения веществом, электромагнитное взаимодействие между заряженными частицами и др. Справедливость квантовой электродинамики подтверждена до расстояний 10-16 см.

Большая советская энциклопедия:

Квантовая электродинамика
Квантовая теория электромагнитных процессов; наиболее разработанная часть квантовой теории поля (См. Квантовая теория поля). Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же К. э. лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — Фотоны, фотоны обладают нулевой массой покоя, энергией E = h и импульсом р = (h/2) k, где h — Планка постоянная, — частота электромагнитной волны, k — волновой вектор, ориентированный по направлению распространения волны и имеющий величину k = 2/c, с— скорость света. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в К. э. как поглощение и испускание частицами фотонов.
К. э. количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются К. э., относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (Комптона эффект), излучение и поглощение фотонов атомами и более сложными системами, испускание фотонов при рассеянии быстрых электронов во внешних полях (Тормозное излучение) и т.п. К. э. с высокой степенью точности описывает эти явления, а также любые др. явления взаимодействия электромагнитного излучения с электронами и позитронами. Меньший успех теории при рассмотрении др. процессов обусловлен тем, что в этих процессах, кроме электромагнитных взаимодействий, играют определяющую роль и взаимодействия иных типов (Сильные взаимодействия, Слабые взаимодействия).
Последовательное построение К. э. привело к пересмотру классических представлений о законах движения материи.
Лит. см. при ст. Квантовая теория поля.
В. И. Григорьев.

Физический энциклопедический словарь:

(КЭД), квантовая теория взаимодействующих эл.-магн. полей и заряж. ч-ц. Часто КЭД называют ту часть квант. теории поля, в к-рой рассматривается вз-ствие эл.-магн. и электронно-позитронного полей. Эл.-магн. поле в такой теории появляется как калибровочное поле. Квантом этого поля явл. фотон — ч-ца с нулевой массой покоя и спином 1, а вз-ствие двух эл-нов есть результат обмена между ними виртуальными фотонами. Безразмерной константой, характеризующей интенсивность взаимодействия, явл. постоянная тонкой структуры a=e2/ћc»I/137 (точнее, a-1=137,035987(29)). Благодаря малой величине а осн. расчётным методом в КЭД явл. возмущений теория, наглядное графич. изображение к-рой дают Фейнмана диаграммы.
Правильность КЭД подтверждена громадным числом экспериментов во всём доступном интервале расстояний (энергий), начиная от космических — 1020 см и вплоть до внутри-частичных — 10-16 см. КЭД описывает такие процессы, как тепловое излучение тел, Комптона эффект, тормозное излучение и др. Однако наиб. характерными для КЭД явл. процессы, связанные с поляризацией вакуума.
Первый наблюдённый эффект КЭД — лэмбовский сдвиг уровней анергии. С рекордной точностью вычисляется и т. н. аномальный магн. момент эл-на. Магн. моментвеличина, обусловливающая вз-ствие покоящейся ч-цы с внеш. магн. полем. Из квант. теории эл-на Дирака следует, что эл-н должен обладать магн. моментом, равным магнетону Бора: mБ= ећ/2mc (где m — масса эл-на). В КЭД поправки, появляющиеся в выражении для энергии такого вз-ствия, естественно интерпретировать как результат появления «вакуумных» добавок к магн. моменту (см. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ). Эти добавки, впервые теоретически исследованные амер. физиком Ю. Швингером, и наз. аномальным магн. моментом. Вычисленное значение магн. момента эл-на
mтеор=mБ(1+a/2p-0,328478(a/p)2+1,184175(a/p)3=1,00115965236(28)mБ
находится в прекрасном согласии с экспериментальным значением:
mэксп=1,00115965241(21)mБ.
Характерным эффектом КЭД явл. рассеяние света на свете. В классич. электродинамике этот эффект отсутствует: эл.-магн. волны рассматриваются в ней как невзаимодействующие. В КЭД эффект становится возможным благодаря вз-ствию с флуктуациями электрон-позитронного вакуума.
Диаграмма Фейнмана, изображённая на рис., соответствует след. процессу. В нач. состояния — два фотона (волнистые линии); один из них в точке 1 исчезает, породив виртуальную электрон-позитронную пару (сплошные линии); второй фотон в точке 2 поглощается одной из ч-ц этой пары (на приведённой диаграмме — позитроном). Затем появляются конечные фотоны: один рождается в точке 4 виртуальным эл-ном, другой возникает в результате аннигиляции виртуальной пары электрон-позитрон в точке 3. Благодаря виртуальным электрон-позитронным парам появляется вз-ствие между фотонами, т. е. принцип суперпозиции эл.-магн. волн нарушается. Это должно проявляться в таких процессах, как рассеяние света на свете. Экспериментально наблюдался имеющий несколько большую вероятность процесс рассеяния фотонов на внеш. электростатич. поле тяжёлого ядра, т. е. на виртуальных фотонах (т. н. дельбрюковское рассеяние). «Высшие» (радиационные) поправки, вычисляемые по методу возмущений, появляются также в процессах рассеяния заряж. ч-ц и в нек-рых др. явлениях.
Ещё один класс «вакуумных» эффектов, предсказываемых теорией,— рождение пар частиц-античастиц в очень сильных (как статических, так и переменных) эл.-магн. и гравитац. полях. Последние обсуждаются, в частности, в связи с космологич. проблемами, связанными с ранними фазами эволюции Вселенной (рождение пар в гравитационном поле чёрных дыр).
Интересен в принципиальном отношении процесс аннигиляции электрон-позитронной пары в виртуальный фотон, к-рый далее превращается в нуклон-антинуклонную пару или в др. адроны. Этот процесспример тесного переплетения физики лептонов и адронов. Важность анализа такого рода процессов особенно возросла после появления экспериментов на встречных электрон-позитронных пучках.
В наст. время КЭД рассматривается как составная часть единой теории слабого и эл.-магн. вз-ствий (см. СЛАБОЕ ВЗАИМОДЕЙСТВИЕ).

Научно-технический словарь:

КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА, КВАНТОВАЯ ТЕОРИЯ, исследующая ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ и его взаимодействие с заряженными частицами. Например, эта теория позволяет предсказать, что столкновение ЭЛЕКТРОНА с ПРОТОНОМ приведет к возникновению ФОТОНА электромагнитного излучения, и произойдет обмен энергией между столкнувшимися частицами.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru