Определение слова «СПЕКТРАЛЬНЫЙ АНАЛИЗ»

Большой энциклопедический словарь:

СПЕКТРАЛЬНЫЙ АНАЛИЗ — физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.

Математическая энциклопедия:

Исследование спектральных характеристик линейных операторов: геометрии спектра и его основных частей, спектральной кратности, асимптотики собственных значений и т. д. Для операторов, действующих в конечномерных пространствах, задача определения спектра эквивалентна задаче локализации корней характеристич. уравнения в бесконечномерных пространствах дело обстоит значительно сложнее, хотя аппарат определителей строится и успешно используется в С. а. нек-рых бесконечномерных операторов. В ряде случаев С. а. оператора основывается на явной конструкции функционального исчисления (операторы умножения в функциональных пространствах, другие модельные операторы, а также операторы, подобные их сужениям или факторам). Широко применяются в С. а. различные теоремы об отображении спектра для функций одного или нескольких операторов — от простейших (спектр многочлена от оператора состоит из значений этого многочлена на спектре оператора, спектр суммы двух коммутирующих операторов содержится в алгебраич. сумме их спектров) до весьма тонких, описывающих спектры функций от некоммутирующих операторов, функций от оператора, имеющих разрывы в граничных точках его спектра, совместные спектры образов многозначных отображений, отображения аппроксимативных, точечных и дефектных спектров и т. д. Полезную информацию о спектре оператора можно извлечь из его топологич. характеристик (напр., спектр непрерывного оператора компактен, а спектр компактного — не более чем счетен, причем его ненулевые точки — изолированные собственные значения), поведения относительно выделенного в пространстве конуса (ведущие собственные значения у положительного оператора) или скалярного произведения (спектр самосопряженного оператора веществен, эрмитово положительного — неотрицателен, диссипативного — лежит в верхней полуплоскости, унитарного — на единичной окружности). Если скалярное произведение не является знакоопределен-ным, но его индекс индефинитности конечен, то спектр сохраняющего его оператора (такие операторы наз. J-унитарными) может иметь не более точек вне единичной окружности; для J-самосопряженных и J-диссипативных операторов положение аналогично (см. [5]). Спектральные характеристики могут обладать определенными свойствами устойчивости (непрерывности); эти свойства являются объектом теории возмущений спектра (раздел общей теории возмущений). Так, спектр является полунепрерывной сверху функцией оператора: любая окрестность спектра ограниченного оператора содержит спектры всех достаточно близких кнему операторов (случай неограниченных операторов требует небольшой модификации). Это позволяет проследить за изменением изолированных точек спектра при малых возмущениях и аналитически (в виде ряда по степеням параметра выразить собственные значения оператора лежащие в окрестности изолированного конечнократного собственного значения оператора А . В нек-рых случаях удается также оценить изменение числа собственных значений оператора в заданной области под действием возмущения, к-рое не предполагается малым по норме, но имеет фиксированный (конечный) ранг. В том же круге идей лежит теорема Вейля (Н. Weyl, 1909) об инвариантности спектра сгущения (дополнение в спектре к множеству изолированных собственных значений конечной кратности) самосопряженного оператора при компактных возмущениях. Фактически им показано, что спектр сгущения самосопряженного оператора Асовпадает с его существенным спектром а равенство справедливо для любого замкнутого Аи компактного К. Из теоремы Вейля следует, что все самосопряженные расширения симметрического оператора с конечными (и равными) дефектными числами имеют одинаковые существенные спектры. Теорема Вейля переносится на случай относительно компактных возмущений (оператор Кназ. компактным относительно А, если он переводит всякое ограниченное множество с ограниченным А- образом в компактное), откуда следует совпадение существенных спектров всех самосопряженных расширений симметричных многомерных дифференциальных операторов широкого класса. Теорема Вейля допускает обращение (Дж. Нейман, J. Neumann, 1935): если два самосопряженных оператора имеют одинаковые существенные спектры, то один из них унитарно эквивалентен возмущению другого компактным (даже принадлежащим классу Гильберта — Шмидта) оператором, имеющим произвольно малую норму. Найдены обобщения этого результата на случай нормальных, существенно нормальных операторов, а также на представления некоммутативных С*-алгебр. Теорема Вейля — Неймана показывает, что существенный спектр — единственная спектральная характеристика самосопряженного оператора, устойчивая относительно компактных возмущений, и что непрерывный и точечный спектры крайне неустойчивы. В то же время абсолютно непрерывный спектр (спектр сужения Ана подпространство Н ас (А)всех векторов для к-рых функция абсолютно непрерывна) также обладает нек-рой устойчивостью: он не меняется при ядерных возмущениях. Это один из основных результатов теории волновых операторов, тесно связанный с квантовомеханич. теорией рассеяния (см. [2]). Волновой оператор W(А, В)для пары самосопряженных операторов А, В — это изометрическое линейное отображение определенное на замкнутом подпространстве всех векторов для к-рых предел существует. Соотношения W(A, В) A=BW(A, В )и показывают, что W(A,B )осуществляет унитарную эквивалентность операторов А, В, если Условие ядерности оператора В-А влечет включения а следовательно, — унитарную эквивалентность абсолютно непрерывных частей операторов Аи В, обеспечивающую тождественность спектральных характеристик. Существует иной подход к задаче доказательства унитарной эквивалентности (в случае несамосопряженных операторов — подобия) возмущенного оператора невозмущенному. При этом подходе записывают условия подобия операторов Аи А+К в виде линейного операторного уравнения AV-VA=VK;ищут линейный оператор Г, обратный слева к оператору умножения т. е. AT(X)- Т (Х) А=Х, дляк-ротооператор является сжатием в пространстве операторов. Если такой оператор Г найти удается, то в качестве Vможно взять оператор (I+Г К)-1I, проверив предварительно его обратимость. Этим методом удается исследовать широкий класс нормальных операторов с дискретным и непрерывным спектром, квазинильпотентных операторов, операторов взвешенного сдвига и, что особенно важно для приложений, многомерных интегро-дифференциальных операторов. С. а. операторов, порожденных аналитич. (дифференциальными, интегральными, разностными и т. д.) операциями в функциональных пространствах, предполагает описание спектра операторов в терминах параметров (коэффициентов) соответствующей операции; широкая применимость теории возмущений в таких задачах объясняется тем, что выделить главную часть и возмущение часто удается в тех же терминах (перераспределяя коэффициенты). Напр., пусть Aq(G)(G — область в q — вещественный потенциал, т. е. числовая функция на G)- оператор Шрёдингёра, определяемый в L2(G)дифференциальной операцией и наиболее жесткими граничными условиями (минимальный оператор). В этом случае Aq(G)симметричен. Естественно считать (точнее, A0(G))невозмущенным оператором, а умножение на q — возмущением; такое представление дает полезные следствия, когда потенциал в каком-то смысле мал. Так, если при то теорема Вейля обеспечивает совпадение существенных спектров операторов Aq и A0 (совпадающих с существенным спектром их самосопряженных расширений); если область G лдостаточно велика

Горная энциклопедия:

(a. spectrum analysis; н. Spektralanalyse; ф. analyse spectrale, analyse spectrographique; и. analisis espectroscopica) — физ. метод определения хим. состава веществ, основанный на использовании спектров электромагнитного излучения, поглощения, отражения или люминесценции. B зависимости от того, определяется атомный или молекулярный состав, различают C. a. атомный и молекулярный. C. a. подразделяется также на качественный и количественный. Первый проводится путём сравнения спектра образца co спектрами известных веществ. Bторой основан на измерении интенсивности излучения (величины поглощения, отражения и т.д.) на длинах волн, принадлежащих определяемым атомам или молекулам, и последующем вычислении по их значениям концентраций. Cреди методов C. a. — Aтомно-абсорбционный анализ, Aтомно- флуоресцентный анализ, Лазерный спектральный анализ, метод рентгеновской флуоресценции, атомный эмиссионный и др. Используют их в горн. деле и геологии для установления хим. состава г. п., руд, минералов, технол. проб в процессе их обогащения и переработки, в геохим. исследованиях. Hапр., атомный эмиссионный C. a. применяется на всех стадиях поисковых и разведочных работ, при изучении м-ний, в минералогич. исследованиях для определения св. 70 элементов при содержаниях от 10-6 — 10-5 % до десятка % c возможностью одноврем. определения в каждой пробе до 40 элементов. Pентгеновская флуоресценция используется для определения элементов (c ат. н. более 10) при концентрациях от 10-4% до десятков %, обладает высокой воспроизводимостью. B геологии нефтей при изучении их состава, исследовании минералов и шлифов, выяснении природы окраски и т.д. эффективно применяется молекулярный C. a.
Литература: Зайдель A. H., Oсновы спектрального анализа, M., 1965; Pусанов A. K., Oсновы количественного спектрального анализа руд и минералов, 2 изд., M., 1978; Mетодические основы исследования химического состава горных пород, руд и минералов, M., 1979.
B. Б. Белянин.

Физический энциклопедический словарь:

Физич. методы качеств. .и количеств. определения состава в-ва, основанные на получении и исследовании его спектров. Основа С. а. — спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров. Атомный С. а. (АСА) определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения; м о л е к у л я р н ы й С. а. (МСА) — мол. состав в-ва по мол. спектрам поглощения, люминесценции и комбинационного рассеяния света. Эмиссионный С. а. производят по спектрам испускания атомов, ионов и молекул, возбуждённым разл. источниками эл.-магн. излучения в . диапазоне от g-излучения до микроволнового. А б-сорбционный С. а. осуществляют по спектрам поглощения анализируемых объектов (атомов, молекул, ионов в-ва).
Атомный С. а. (АСА)
Качественный АСА осуществляют сопоставлением полученного спектра исследуемого в-ва со спектр. линиями элементов, приведёнными в спец. таблицах и атласах. В основе количественного АСА лежит соотношение, связывающее концентрацию с определяемого элемента с отношением интенсивностей линий определяемой примеси (I1) и линии сравнения (I2): I1/I2=асb (постоянные a и b определяются опытным путём), или
lg(I1/I2)=blgc+lga.
С помощью стандартных образцов (не менее трёх) можно построить график зависимости lg(I1/I2) от Igc (градуировочный график, рис.) и определить по нему а и 6. Значения It и I2 можно получать непосредственно путём фотоэлектрич. измерений или путём фотометрирования (измерения плотности почернения) на микрофотометре линий определяемой примеси и линии сравнения при фоторегистрации.
Градуировочный график (метод трёх эталонов).
В эмиссионном АСА для получения спектров испускания исследуемого в-ва отбирают представит. пробу, отражающую его состав, и вводят её в источник излучения (атомизатор). Здесь тв. и жидкие пробы испаряются, соединение диссоциирует и свободные атомы (ионы) переходят в возбуждённое состояние. Испускаемое ими излучение раскладывается в спектр и регистрируется (или наблюдается визуально) с помощью спектрального прибора.
Для возбуждения спектра в АСА используют разл. источники света и соответственно разл. способы введения в них образцов. Выбор источника зависит от конкретных условий анализа объекта. Тип источника и способ введения в него пробы составляют гл. содержание частных методик АСА. Первым искусств. источником света в АСА было пламя газовой горелки — источник. весьма удобный для быстрого и точного определения мн. элементов. Темп-ра пламён горючих газов невысока (от 2100К для смеси водородвоздух до 4500К для смеси кислород — циан). С помощью фотометрии пламенной определяют ок. 70 элементов по их аналитич. линиям, а также по мол. полосам соединений, образующихся в пламёнах.
В эмиссионном АСА широко используются электрич. источники света. В электрич. дуге пост. тока между специально очищенными угольными электродами разл. формы, в каналы к-рых помещают исследуемое в-во в измельчённом состоянии, можно производить одновременно определение десятков элементов. Она обеспечивает относительно высокую темп-ру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300—400 В или переходя к высоковольтной дуге (3—4 кВ), можно увеличить точность анализа.
Более стабильные условия создаёт дуга перем. тока. В совр. генераторах дуги перем. тока можно получать разл. режимы возбуждения (низковольтную дугу, искру, ВЧ искру, дугу перем. тока, импульсный разряд и т. д.). Такие источники света с разл. режимами используют при определении металлов и трудно возбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсиров. искра служит гл. обр. источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях электродов, приводят к изменению состава плазмы разряда. Чтобы устранить это явление, производят предварит. обжиг проб, нормируют форму и размеры проб и стандартных образцов.
В эмиссионном АСА перспективно применение стабилизиров. форм электрич. разряда, получаемых в плазмотронах разл. конструкций, ВЧ индукционного разряда, СВЧ разряда, создаваемого магнетронными генераторами, ВЧ факельного разряда. С помощью разл. приемов введения анализируемых в-в в плазму этих разрядов (продувка порошков, распыление р-ров и т. д.) значительно повышена относит. точность анализа (до 0,5—3%), в т. ч. и компонентов сложных проб, содержание к-рых составляет десятки %. В нек-рых важных случаях анализа чистых в-в применение этих типов разряда снижает пределы определения примесей на 1—2 порядка (до 10-5—10-6 %).
Для апализа чистых в-в, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в металлах и тв. телах и т. д. весьма перспективно оказалось использование разряда в полом катоде и безэлектродных ВЧ и СВЧ разрядов. В качестве источников возбуждения применяются также лазеры (см. ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ).
Атомно-абсорбционный С. а. (ААА) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу также испаряют в атомизаторе (в пламени, графитовой трубке, плазме стабилизированного ВЧ и СВЧ разряда). В ААА свет от источника дискр. излучения, проходя через пар в-ва, ослабляется, и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на спец. спектрофотометрах; методика его проведения по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах.
В АФА ат. пары пробы облучают резонансным для исследуемого элемента излучением и регистрируют его флуоресценцию. Для нек-рых элементов (Zn, Cd, Hg и др.) относит, пределы обнаружения весьма малы (=10-5—10-6 %).
АСА позволяет проводить измерение изотопного состава благодаря изотопному сдвигу спектр. линий (для большинства элементов требуются приборы высокой разрешающей способности, напр. эталон Фабри — Перо). Изотопный С. а. можно также проводить по электронно-колебательным спектрам молекул, определяя изотопные сдвиги полос, достигающие в некоторых случаях значительной величины.
Экспрессные методы АСА широко применяются в пром-сти, с. х-ве, геологии и мн. др. областях нар. х-ва и науки. Значит. роль АСА играет в ат. технике, произ-ве чистых ПП материалов, сверхпроводников и т. д.
К С. а. относится также анализ элементного состава в-ва по рентг. спектрам (см. СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ), по спектрам оже- и фотоэлектронов ((см. ) Оже-спектроскопия и Фотоэлектронная спектроскопия), по спектрам фотопроводимости и др.
Молекулярный спектральный анализ (МСА)
В основе МСА лежит качеств. и количеств. сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качеств. и количеств. МСА. В МСА используют разл. виды молекулярных спектров: вращательные (микроволновая и длинноволновая ИК области спектра), колебательные и колебательно-вращательные (спектры поглощения и излучения в ср. ИК области, спектры комбинационного рассеяния света (КРС), спектры ИК флуоресценции), электронные, электронно-колебательные и электронно-колебательно-вращательные (спектры поглощения и пропускания в видимой и УФ областях, спектры флуоресценции). МСА позволяет проводить анализ малых количеств в-ва (до долей мкг и менее) в разл. агрегатных состояниях.
Осн. факторы, определяющие возможности методов МСА:
1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определ. интервале длин волн или частот исследуемого диапазона (для микроволн. диапазона оно =105, для ср. ИК области =103);
2) кол-во измеренных спектров индивидуальных соединении;
3) существование общих закономерностей между спектром в-ва и его мол. строением;
4) чувствительность и избирательность метода;
5) универсальность метода;
6) простота и доступность измерений спектров.
Качественный МСА устанавливает мол. состав исследуемого образца. Спектр молекулы явл. его однозначной хар-кой. Наиболее специфичны спектры в-в в газообразном состоянии с разрешённой вращат. структурой, к-рые исследуют с помощью спектр. приборов высокой разрешающей способности. Чаще всего используют спектры ИК поглощения и КРС в-в в жидком и тв. состояниях, а также спектры поглощения в видимой и УФ областях. Широкому внедрению метода КРС способствовало применение для их возбуждения лазерного излучения.
Для повышения эффективности МСА в нек-рых случаях измерение спектров комбинируют с др. методами идентификации в-в. Так, всё большее распространение получает сочетание хроматографич. разделения в-в смесей с измерением ИК спектров поглощения выделенных компонентов.
К качеств. МСА относится также т. н. структурный мол. анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания (особенно колебательных) общие черты. Так, наличие сульфгидрильной группы (—SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565—2575 см-1 нитрильной группы (—CN) — полосы 2200— 2300 см-1 и т. д. Присутствие этих характеристич. полос в колебат. спектрах в-в с общими структурными элементами объясняется характеристичностью частоты ((см. ) Характеристические частоты) и формы мн. мол. колебаний. Эта особенность колебательных (и в меньшей степени электронных) спектров позволяет определять структурный тип в-ва.
Применение ЭВМ существенно упрощает и ускоряет качеств. анализ. В принципе его можно полностью автоматизировать, вводя показания спектр. приборов непосредственно в ЭВМ, в память к-рой заложены спектральные характеристич. признаки мн. в-в.
Количественный МСА по спектрам поглощения основан на Бугера — Ламберта — Бера законе, устанавливающем связь между интенсивностями падающего I0 и прошедшего через в-во I света в зависимости от толщины поглощающего слоя l и концентрации в-ва с:
I(l)=I0e-ccl.
Коэфф, c явл. хар-кой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие успешного проведения количеств. МСА — независимость c от с и постоянство c в измеряемом интервале частот, определяемом шириной щели спектрофотометра. МСА по спектрам поглощения проводят преим. для жидкостей и р-ров, для газов он значительно усложняется.
В практич. МСА обычно измеряют т. н. оптич. плотность D:
D = lnI0/I=ccl.
Если смесь состоит из n в-в, не реагирующих друг с другом, то оптич. плотность смеси на частоте v аддитивна: D=Sni=1Div. Это позволяет проводить полный или частичный анализ многокомпонентных смесей. Задача в этом случае сводится к измерению значений оптич. плотности в m точках спектра смеси (m?n) и решения получаемой системы ур-ний:
Dk=Sni=1Dki.
Для количеств. МСА обычно пользуются спектрофотометрами, позволяющими производить измерения I(v) в сравнительно широком интервале v. Если полоса поглощения исследуемого в-ва достаточно изолирована и свободна от наложения полос др. компонентов смеси, исследуемый спектр. участок можно выделить, напр., при помощи интерференц. светофильтра. На его основе конструируют спец. анализаторы, используемые в промышленности.
При количеств. MCA по спектрам КРС чаще всего интенсивность линий определяемого компонента смеси сравнивают с интенсивностью нек-рой линии стандартного в-ва, измеренной в тех же условиях (метод внеш. стандарта). В др. случаях стандартное в-во добавляют к исследуемому в определ. кол-ве (метод внутр. стандарта).
Среди др. методов качеств. и количеств. МСА наибольшей чувствительностью обладает флуоресцентный анализ, однако он уступает методам колебат. спектроскопии в универсальности и избирательности. Количеств. МСА по спектрам флуоресценции основан на сравнении свечения р-ра исследуемого образца со свечением ряда эталонных р-ров близкой концентрации.
Особое значение имеет флуоресцентный анализ с применением техники замороженных р-ров в спец. растворителях, напр. в парафинах (Шпольского эффект). Благодаря исключительно малой ширине спектр. линий в этом случае удаётся достичь высокой пороговой чувствительности обнаружения нек-рых многоатомных ароматич. соединений (= 10-11 г/см3).

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru