Определение слова «МЁССБАУЭРОВСКАЯ СПЕКТРОСКОПИЯ»

Горная энциклопедия:

(a. Mossbauer spectrorometry; н. Mossbauer- Spektrographie; ф. spectroscopie а effet Mossbauer; и. espectroscopia de Mossbauer) — метод исследования электронноядерных взаимодействий и атомно-молекулярной динамики в твёрдых телах. M. c. основана на использовании явления испускания и поглощения гамма-квантов атомными ядрами в твёрдых телах, не сопровождающегося изменением колебательного состояния твёрдого тела (явление открыто в 1958 нем. физиком P. Мёссбауэром и названо эффектом Мёссбауэра).
Благодаря эффекту Мёссбауэра спектры излучения и поглощения гамма-квантов ядрами в твёрдых телах при определённых условиях могут состоять из сверхузких линий c естеств. шириной за счёт теплового движения ядер и не смещённых по энергии за счёт отдачи ядер при излучении и поглощении гамма-квантов. Разл. хим. соединения данного элемента, используемые в качестве источников излучения (радионуклидов) или поглотителей (нуклидов), имеют свой характерный спектр излучения или поглощения соответственно. Изучая эти спектры, можно судить o хим. составе и структуре исследуемого вещества (рис. 1).

Рис. 1. Мёссбауэровские спектры поглощения тетрагалогенидов олова (источник излучений 119SnO2, d 1, 2, 3, 4 — химические сдвиги относительно 119SnO2, D — квадрупольное расщепление).
B M. c. обычно используются радионуклиды c 10-6 > > 10-10 c, 10 кэB < E < <200 кэB и 10-10 > Г/E0 >10-14, где — время жизни ядра — источника излучения на "мёссбауэровском" энергетич. уровне, E — энергия ядерного перехода (энергия гамма-кванта), Г = / (2 — постоянная Планка)ширина спектральной линии на половине её высоты. Для экспериментального наблюдения спектров необходимо иметь пары одинаковых нуклидов — один в возбуждённом состоянии (источник излучения); другой в осн. состоянии (поглотитель излучения) и осуществить резонансное поглощение гамма-квантов. Нуклид в поглотителе может входить в его состав в качестве компонента или примеси. Если пропускать пучок гамма-квантов от источника излучения через поглотитель, то для получения спектра (эффекта резонансного поглощения) необходимо контролируемо изменять энергию гамма-кванта (E). Наиболее просто это сделать c помощью эффекта Доплера, возникающего при перемещении источника излучения относительно поглотителя co скоростью v:
E= v/c *·E, где c — скорость света.
Из зависимости относит. интенсивности прошедшего через поглотитель излучения от скорости получают мёссбауэровский спектр. Вид мёссбауэровского спектра (число линий, их относит. и абс. интенсивности, ширина и форма, сдвиг центра тяжести в шкале скоростей, расстояние между линиями) зависит как от выбранного нуклида, его хим. соединения, так и от внеш. условий (темп-ры, давления, внеш. электрич. и магнитных полей, наличия сверхтонких взаимодействий и характера движения).
Эффект Мёссбауэра наблюдался на 103 нуклидах 42 элементов (рис. 2).

Рис. 2. Таблица Д. И. Менделеева c указанием элементов, на которых наблюдался эффект Мёссбауэра, и элементов, на которых возможно его наблюдение.
Величина наблюдаемого эффекта Мёссбауэра обычно сильно уменьшается c ростом E и темп-ры. Поэтому практически нереально использование радионуклидов c E>200 кэB, даже при T4,2 K. Однако многие нуклиды, напр. 57Fe, 119Sn, 151Eu и т.д., входящие в состав руд и минералов, обнаруживают эффект Мёссбауэра даже при T500 K.
M. c. применяется в геологии для фазового анализа руд и минералов и как экспрессный неразрушающий аналитич. метод, обладающий абс. избирательностью: при выбранном радионуклиде в источнике излучения, в поглотителе анализируется хим. соединение только этого нуклида. Наиболее распространены исследования железо- и оловосодержащих руд и минералов, однако нет принципиальных трудностей для применения M. c. к изучению природных соединений золота, редкоземельных элементов, актиноидов и др. элементов. Ha принципе измерения площади характерных спектральных линий (площади спектральных линий пропорциональны содержанию соответствующих фаз) разработаны и внедрены в пром-сть приборы для экспрессного (в течение нескольких минут) неразрушающего определения концентрации касситерита в пробах в условиях поиска и оконтуривания м-ния олова, в условиях его естеств. залегания и на обогатит. ф-ках (приборы автономны и их масса не превышает 5 кг). Чувствительность приборов — тысячные доли массового процента SnO2. Ha основе M. c. созданы также приборы для изучения фазового состава железосодержащих руд и минералов и исследовано неск. тысяч индивидуальных соединений, спектры к-рых могут быть использованы при анализе сложных природных систем. M. c. применяется в геохронологии (используется зависимость нек-рых параметров мёссбауэровских спектров природных минералов, содержащих железо, от истории их образования). Наибольшее количество исследований проведено на глауконитах, биотитах и флогопитах, т.e. на осн. породообразующих минералах. Исследование соединений железа и их эволюции в осадках термальных вод и в кер-новом материале скважин выявило новые возможности M. c. для решения нек-рых задач сейсмогеохимии, практич. и поисковой геологии.
Литература: Химические применения мессбауэровской спектроскопии, пер. c англ., M., 1970; Гамма-резонансные методы и приборы для фазового анализа минерального сырья, M., 1974; Мессбауэровская спектроскопия, пер. c англ., M., 1983; Амирханов X. И., Анохина Л. K., Применение мессбауэровской (гамма-резонансной) спектроскопии в геохронологии и сейсмогеохимии, Махачкала, 1984.
E. P. Макаров.

Физический энциклопедический словарь:

Метод изучения вз-ствия ядра с электрич. и магн. полями, создаваемыми его окружением, основанный на использовании Мессбауэра эффекта. Эти вз-ствия вызывают сдвиги и расщепления уровней энергии ядра, что проявляется в сдвигах и расщеплениях мёссбауэровских линий. Энергия таких вз-ствий ?10-4 эВ, однако сверхтонкая структура мессбауэровской линии легко наблюдаема благодаря малой естеств. ширине линии. Для этого используется Доплера эффект. Источнику g-излучения сообщается скорость v (относительно поглотителя), при этом энергия g-кванта меняется на величину D? = ?0v/с (?0— энергия g-перехода). Скорости v в интервале 0,1 —1,0 см/с приводят к смещению линии на величину порядка её естеств. ширины. М ё с с б а у э р о в с к и е с п е к т р ом е т р ы (рис. 1) измеряют зависимость резонансного поглощения g-квантов от скорости источника V. Максимум поглощения наблюдается, когда сдвиг мёссбауэровской линии, вызванный этим вз-ствием, компенсируется доплеровским сдвигом.
Важнейшими типами вз-ствий ат. ядра с внеядернымн полями явл. электрич. монопольное, электрич. квадрупольное и магн. дипольное вз-ствия.
Рис. 1. Схема мёсобауэровского спектрометра.
Рис. 2. Сдвиг 6 и расщепление мёссбауэровскои линии.
Электрич. монопольное вз-ствие (вз-ствие ядра с электростатич. полем, создаваемым в области ядра окружающими его эл-нами) приводит к изомерному хим. сдвигу g-линии (рис. 2, а, б), к-рый наблюдается, если источник и поглотитель химически не тождественны. Изомерный сдвиг (d) пропорц. электронной плотности вблизи ядра, и его величина — важная хар-ка хим. связи атомов в тв. телах. По величине d можно судить о степени «ионности» и «ковалентности» хим. связи, об электроотрицательности атомов, входящих в состав молекул и т. д. Исследование хим. сдвигов позволяет также получать сведения о распределении заряда в ядрах.
Электрическое квадрупольное вз-ствие — вз-ствие электрич. квадрупольного момента ядра Q с неоднородным электрич. полем — приводит к расщеплению яд. уровней, в результате чего в спектрах поглощения наблюдаются две (или больше) линии. Напр., для ядер 57Fe, 119Sn и 125Те в спектрах поглощения присутствует квадрупольный дублет (рис. 2, в). Разность энергии между компонентами дублета (D) пропорц. произведению Q на градиент электрич. поля в области ядра. Т. к. последний характеризует симметрию зарядов, окружающих ядро, то исследование квадрупольного вз-ствия позволяет получить информацию об электронных конфигурациях атомов и ионов, об особенностях структуры тв. тел, а также о квадрупольных моментах ядер.
Магн. дипольное вз-ствие обычно наблюдается в магнитно-упорядоченных в-вах (ферро-, антиферро-ферримагнитных), в к-рых на ядра действуют сильные магн. поля (напряжённостью =106 Э). Энергия магн. дипольного вз-ствия пропорц. произведению магн. поля Н на магн. момент ядра и зависит от их взаимной ориентации. Магн. дипольное вз-ствие приводит к расщеплению осн. и возбуждённого состояний ядер, в результате чего в спектре поглощения появляется неск. линий, число к-рых соответствует числу возможных g-переходов между магн. подуровнями (см. ЗЕЕМАНА ЭФФЕКТ) этих состояний. Напр., для ядра 57Fe число таких переходов равно 6 (рис. 2, г). По расстоянию между компонентами магн. сверхтонкой структуры можно определить напряжённость магн. поля, действующего на ядро в тв. теле. Величины этих полей очень чувствительны к особенностям электронной структуры тв. тела, к составу магн. материалов, поэтому исследование магн. сверхтонкой структуры используется для изучения св-в кристаллов. Зависимость сверхтонкой структуры мёссбауэровского спектра от вида электронных волновых ф-ций позволяет использовать данные М. с. для изучения распределения зарядовой и спиновой плотности в тв. телах, для хим. анализа и т. п. Чувствительность формы мёссбауэровского спектра к динамич. эффектам используется в М. с. для изучения диффузии атомов, спиновой релаксации, динамич. явлений при фазовых переходах и т. д.
Регистрация вторичных ч-ц (рентгеновских квантов, эл-нов конверсии внутренней), сопровождающих распад возбуждённого состояния ядра после резонансного поглощения g-кванта, позволяет изучать поверхности тв. тел. Напр., при регистрации конверсионных эл-нов возможно исследование поверхностных слоев толщиной =1000 ?.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru