Определение слова «КВАЗИКЛАССИЧЕСКОЕ ПРИБЛИЖЕНИЕ»

Математическая энциклопедия:

Асимптотическое представление, асимптотика решений уравнений квантовой механики при (h- постоянная Планка). Уравнение Шрёдингера описывает движение квантовомеханич. частицы в потенциальном поле V(x). Движение классич. частицы описывается уравнением Гамильтона — Якоби или системой Гамильтона Задаче Коши для уравнения Шрёдингера сопоставляется задача Коши для системы (3) (здесь функции j, S0, V- гладкие, S0, V- действительные, j — финитна). Асимптотика решения y(t, x )при и при малых T>0 имеет вид: здесь S(t, x)- решение уравнения (2) с данными Коши S|t=0=S0(x)(классическое действие), а где x=x(t, у), p=p(t, у) — решение задачи (3), (5). Функции jj при определяются из рекуррентной системы уравнений переноса (это обыкновенные дифференциальные уравнения вдоль траекторий системы (3)), так что все члены асимптотики выражаются в терминах классич. механики. Принцип соответствия Бора утверждает: "Если hстремится к нулю, то квантовые законы должны переходить в законы классические". Метод отыскания асимптотики в виде (6) был предложен П. Дебаем (P. Debye) и широко применяется в квантовой механике. Асимптотика решения задачи (1), (4) в большом (т. е. за любое конечное время) строится с помощью канонич. оператора В. П. Маслова [3]. Данные Коши (5) заполняют n-мерное лагранжево многообразие А" в фазовом пространстве Его сдвиги вдоль траекторий системы (3) — также лагранжевы многообразия; их объединение есть (n+1)-мерное лагранжево многообразие в фазовом пространстве R2n+2 с координатами (t, x, р 0, р). Для канонич. оператора отвечающего справедлива формула коммутации где — производная в силу системы (3), L- оператор Шрёдингера. Асимптотика решения y в большом дается формулой где функции cj определяются из данных Коши (4) с помощью уравнений переноса и выражаются в терминах классич. механики. В нефокальной точке (t0, x0 )асимптотика имеет вид где сумма берется по всем лучам, приходящим в эту точку, Sj и Jj- действие и якобиан для j-го луча, lj- индекс Морса j-го луча. Для стационарного уравнения Шрёдингера в К. п. исследованы задача о рассеянии, задача о поле точечного источника, получены квазиклассич. серии (типа бальмеровских) собственных значений. в широком смысле слова (синонимы: высокочастотная асимптотика, коротковолновое приближение, приближение геометрия, оптики, метод ВКБ, метод эйконала) — асимптотика решений дифференциальных уравнений с частными производными с действительными характеристиками вида а также систем дифференциальных и псевдодифференциальных уравнений. Здесь — большой параметр, символ L(x, p;e) слабо зависит от e. Уравнению (9) отвечают уравнения классич. механикиуравнение Гамильтона — Якоби и система Гамильтона где L0=L(x, р;0). К. п. строится с помощью канонич. оператора, отвечающего инвариантным относительно динамич. системы (10) лагранжевым многообразиям, и имеет вид, аналогичный (8). К. п. широко применяется в современной физике, в задачах о распространении звуковых, упругих, электромагнитных волн, в нерелятивистской и релятивистской квантовой механике и других вопросах. Лит.:[1] Бриллюэн Л., Атом Бора, пер. с франц., Л.- М., 1935; [2] Ландау Л. Д., Лившиц Е. М., Квантовая механика, 2 изд., М., 1963 (Теоретическая физика, т. 3); [3] Маслов В. П., Теория возмущений и асимптотические методы, М., 1965; [4] Маслов В. П., Федорюк М. В., Квазиклассическое приближение для уравнений квантовой механики, М., 1976; [5] Фок В. А., Проблемы дифракции и распространения электромагнитных волн, М., 1970; [6] Бабич В. М., Булдырев В. С, Асимптотические методы в задачах дифракции коротких волн, М., 1972; [7] Маслов В. П., Операторные методы, М., 1973. М. В. Федорюк.

Физический энциклопедический словарь:

Квантовой механики (Венцеля — Крамерса — Бриллюэна метод), приближённый метод решения задач квант. механики, применимый, когда и квант. и классич. описание движения ч-цы дают близкие результаты; впервые использован нем. физиком Г. Венцелем, англ. физиком Г. Крамерсом и франц. физиком Л. Бриллюэном в 1926. С точки зрения общей теории волн. полей К. п. соответствует такому описанию, при к-ром основным явл. рассмотрение лучей («геом. приближение»), а «волновые» эффекты выступают как малые поправки. Такое описание приемлемо, если длина волны (в квант. механике — длина волны де Бройля) достаточно маламного меньше всех масштабов неоднородностей действующих на ч-цу внеш. полей. Кроме того, необходимо, чтобы длина волны медленно менялась от точки к точке. Т. к. длина волны де Бройля l равна отношению постоянной Планка h к импульсу р, к-рый связан с полной ? и потенциальной U(х) энергиями соотношением
?=р2/2m+U(х)
(где х — координата),
К. п. применимо лишь в случаях, когда U(х) меняется достаточно медленно с изменением х.
Формально К. п. сводится к вычислению действия S в виде разложения в ряд: S=S0+S1+S2+.., первый член к-рого не зависит от h (классич. действие S0), второй пропорц. h, третий пропорц. h2 и т. д. Найдя S, можно получить и волн. ф-цию y, равную: y=ехр(2piS/h). Обычно ограничиваются членом S1. Получаемая при этом y наз. квазиклассич. волн. ф-цией, yкп.
Важный частный случай — движение ч-цы в конечной области пр-ва. При таком финитном движении внутри нек-рой потенциальной ямы К. п. не может быть применимым везде; это ясно хотя бы из того, что, доходя до «стенки» ямы, ч-ца (на языке классич. физики) на мгновение останавливается, т. е. р обращается в нуль, а следовательно, l®?. Для окрестностей вблизи таких точек поворота нужно искать y на основе точного квантовомеханич. Шредингера уравнения, а затем потребовать, чтобы между yкп и y был непрерывный переход при приближении к точкам поворота. Оказывается, что из требований этой непрерывности и однозначности y без дополнит. предположений вытекают условия квантования Бора.
Применимость К. п. оправдана лишь при больших значениях квантовых чисел.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru