Определение слова «Оптическая ориентация»

Большая советская энциклопедия:

Оптическая ориентация
Парамагнитных атомов, упорядочение с помощью оптического излучения (См. Оптическое излучение) направлений магнитных моментов (См. Магнитный момент) и связанных с ними механических моментов атомов газа (см. Атом). Открыта А. Кастлером в 1953. Различают собственно О. о., при которой атомный газ приобретает макроскопический магнитный момент, и выстраивание, характеризующееся появлением анизотропии (См. Анизотропия) распределения моментов атомов при сохранении равенства нулю полного макроскопического момента газа. Собственно О. о. происходит при резонансном поглощении или рассеянии атомами поляризованного по кругу излучения (см. Поляризация света). Фотоны такого излучения обладают моментом количества движения (См. Момент количества движения), равным ± (— Планка постоянная), и передают его атому при взаимодействии с ним. В газе парамагнитных атомов это приводит к преимущественной ориентации механических моментов электронов и, следовательно (см., например, Магнетон), магнитных моментов атомов. Т. о., простейшее объяснение О. о. состоит в том, что она является следствием закона сохранения момента количества движения (см. Сохранения законы) в системе фотон — атом. Выстраивание, в отличие от собственно О. о., осуществляется не поляризованным по кругу, а линейно-поляризованным или неполяризованным излучением. Поглощение ориентированным газом падающего излучения заметно меняется. О. о. регистрируют по этому эффекту, а также по возникающей при ней оптической анизотропии (См. Оптическая анизотропия) газа — дихроизму (см. Плеохроизм), двойному лучепреломлению (См. Двойное лучепреломление), появлению вращения плоскости поляризации (См. Вращение плоскости поляризации) проходящего света. Непосредственно О. о. осуществлена с парами щелочных и щёлочноземельных металлов, атомами инертных газов в метастабильных состояниях (См. Метастабильное состояние) и некоторыми ионами. Парамагнитные атомы, особенности электронного строения которых исключают их прямую О. о., могут ориентироваться косвенно — при соударениях с другими, уже ориентированными атомами (спиновый обмен). Возможна также О. о. носителей заряда в полупроводниках. Воздействие «внутреннего» магнитного поля ориентированных электронных оболочек может приводить к ориентации магнитных моментов ядер атомов (см. Ориентированные ядра, Отрицательная температура), которая сохраняется значительно дольше, чем электронная ориентация (как говорят, её время релаксации больше), в связи с чем этот эффект используют для создания квантовых гироскопов (См. Квантовый гироскоп). Ориентированные атомы применяют для изучения слабых межатомных взаимодействий и взаимодействий электромагнитных полей с атомами. Квантовые магнитометры (См. Квантовый магнитометр) с О. о. (обычно электронной) позволяют регистрировать чрезвычайно малые (~10–8 э) изменения напряжённости магнитного поля (См. Напряжённость магнитного поля) в диапазоне от нуля до нескольких сотен э. О. о. является частным случаем оптической накачки (См. Оптическая накачка) — перевода вещества в энергетически неравновесное состояние в процессах поглощения им света.
Е. Б. Александров.

Физический энциклопедический словарь:

1) парамагнитных атомов — упорядочение с помощью анизотропного оптического излучения направлений механич. моментов и связанных с ними магн. моментов парамагн. атомов газа. Открыта франц. физиком А. Кастлером в 1953. О. о. явл. частным случаем оптической накачки — перевода в-ва в энергетически неравновесное состояние в процессах поглощения им света. Различают собственно О. о., при к-рой ат. газ приобретает не равный нулю макроскопический магн. момент, и в ы с т р а и в а н и е, характеризующееся появлением анизотропного распределения магн. моментов атомов при сохранении нулевого макроскопического магн. момента газа.
Собственно ориентация достигается при резонансном поглощении или рассеянии атомами циркулярно поляризованного света. Процесс ориентации в простейшем случае можно рассматривать как следствие сохранения момента кол-ва движения (спина) в системе фотон — атом. Поляризованный по правому (левому) кругу фотон (см. ПОЛЯРИЗАЦИЯ СВЕТА) обладает проекцией механич. момента кол-ва движения, равной +h (-h), и при поглощении атомом фотона последний передаёт ему этот момент. В газе парамагн. атомов это приводит к преимуществ. ориентации механич. моментов эл-нов и, следовательно, магн. моментов атомов (см. МАГНЕТОН).
Выстраивание осуществляется неполяризованным или линейно поляризованным излучением, для к-рого проекция спина фотона может с равной вероятностью быть равной +h и -h. Парамагн. атомы, поглотившие такие фотоны, окажутся выстроенными параллельно и антипараллельно лучу света, т. е. появится анизотропия в распределении направлений магн. моментов при нулевом макроскопическом магн. моменте.
О. о. регистрируется по изменению поглощения газом ориентирующего света (по мере ориентации поглощение, как правило, уменьшается, (см. ПРОСВЕТЛЕНИЯ ЭФФЕКТ)), а также по возникающей оптической анизотропии (дихроизму, двойному лучепреломлению, вращению плоскости поляризации). Непосредственно О. о. осуществлена с парами металлов первых трёх групп элементов таблицы Менделеева, а также с атомами инертных газов в мета-стабильных состояниях и нек-рыми ионами. Нек-рые парамагн. атомы, особенности электронного строения к-рых исключают их прямую О. о., могут ориентироваться косвенно — при соударениях с другими, уже ориентированными атомами (спиновый обмен). Возможна также О. о. носителей зарядов в ПП и примесных парамагн. центров в кристаллах. Воздействие «внутреннего» магн. поля ориентированных электронных оболочек может приводить к ориентации магн. моментов ядер атомов (см. ОРИЕНТИРОВАННЫЕ ЯДРА), к-рая сохраняется значительно дольше, чем электронная ориентация атомов. В связи с этим ядерную О. о. используют для создания квантовых гироскопов. Ориентированные атомы применяют для изучения слабых меж-ат. вз-ствий и вз-ствий эл.-магн. полей с атомами. Квантовые магнитометры с О. о. (обычно электронной) позволяют регистрировать крайне малые (=10-8 Э) изменения напряжённости магн. поля в диапазоне от нуля до неск. сотен Э.
2) О. о. спинов эл-нов проводимости в полупроводниках — возникновение преимущественного направления у спинов эл-нов при освещении полупроводника циркулярно поляризованным светом. При правой поляризации света (по часовой стрелке) спины ориентируются в направлении, противоположном световому лучу, при левой поляризации — вдоль него. О. о. обнаружена франц. физиком Ж. Лампелем и англ. физиком Р. Р. Парсонсом (1968—69) и теоретически объяснена М. И. Дьяконовым и В. И. Перелем (1971). При генерации носителей циркулярно поляризованным светом в результате спин-орбитального взаимодействия момент импульса фотона передаётся системе электрон — дырка.
Мерой О. о. явл. разность концентрации эл-нов (дырок) со спинами, направленными вдоль луча и навстречу ему, отнесённая к их полной концентрации. После выключения света эта величина убывает в результате рекомбинации неравновесных носителей и спиновой релаксации внутри каждой зоны (дырки обычно релаксируют быстрее, чем эл-ны). О. о. может быть зарегистрирована по поляризации ре-комбинационного излучения. Вз-ствие эл-нов с ат. ядрами в условиях О. о. приводит к появлению яд. намагниченности. Т. к. время жизни ориентированных ядер на много порядков превышает аналогичное время для эл-нов, то легче наблюдать яд. намагниченность (методом ядерного магн. резонанса), чем намагниченность неравновесного электронного газа. Магн. поле, перпендикулярное световому лучу, разрушает О. о. (э ф ф е к т X а н л е). Метод О. о. используется для изучения зонной структуры ПП, времён жизни носителей, механизмов рекомбинации и спиновой релаксации.
3) О. о. ядер — см. в ст. (см. ОРИЕНТИРОВАННЫЕ ЯДРА).

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru