Определение слова «МОДУЛЯЦИЯ КОЛЕБАНИЙ»

Большой энциклопедический словарь:

МОДУЛЯЦИЯ КОЛЕБАНИЙ — изменение амплитуды, частоты, фазы или др. характеристик колебаний по заданному закону, медленное по сравнению с периодом этих колебаний. Различают модуляцию колебаний амплитудную, частотную и фазовую. Модуляция колебаний используется для передачи информации с помощью электромагнитных волн. Переносчик сигнала в этом случае — синусоидальные колебания высокой (несущей) частоты, амплитуда, частота или фаза которых модулируются передаваемым сигналом. Модуляция колебаний осуществляется на специальном устройстве — модуляторе. В радиовещании применяется главным образом амплитудная модуляция. См. также Импульсная модуляция.

Большая советская энциклопедия:

Модуляция колебаний
Медленное по сравнению с периодом колебаний изменение амплитуды, частоты или фазы колебаний по определённому закону. Соответственно различаются амплитудная модуляция, частотная модуляция и фазовая модуляция (рис. 1). При любом способе М. к. скорость изменения амплитуды, частоты или фазы должна быть достаточно малой, чтобы за период колебания модулируемый параметр почти не изменился.
М. к. применяется для передачи информации с помощью электромагнитных волн радио- или оптических диапазонов. Переносчиком сигнала в этом случае являются синусоидальные электрические колебания высокой частоты (несущая частота). Амплитуда, частота, или фаза этих колебаний, а в случае света и поляризация, модулируются передаваемым сигналом (см. Модуляция света).
В простейшем случае модуляции амплитуды А синусоидальным сигналом модулированное колебание, изображенное на рис. 2, может быть записано в виде:
х = А0 (1 + m sin t) sin ( t + ). (1)
Здесь A0 и — амплитуда и частота исходного колебания, — частота модуляции, а величина m, называется глубиной модуляции, характеризует степень изменения амплитуды:

Частота модуляции характеризует скорость изменения амплитуды колебаний. Эта частота должна быть во много раз меньше, чем несущая частота . Модулированное колебание уже не является синусоидальным. Амплитудно-модулированное колебание представляет собой сумму трёх синусоидальных колебаний с частотами , + и — . Колебание частоты называется (в радиотехнике) несущим. Его амплитуда равна амплитуде исходного колебания А0. Две остальные частоты называются боковыми частотами, или спутниками. Амплитуда каждого спутника равна mА0/2.
Т. о., любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а целый набор (спектр) частот. В простейшем случае М. к. синусоидальным сигналом этот спектр содержит лишь три составляющие — несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в модулированном колебании будут две боковые полосы, частотный состав которых определяется частотным составом модулирующего сигнала. Поэтому каждая передающая станция занимает в эфире определённый частотный интервал. Во избежание помех несущие частоты различных станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от характера передаваемого сигнала: для радиовещания (См. Радиовещание) — 10 кгц, для телевидения (См. Телевидение) — 6 Мгц. Исходя из этих величин, выбирают интервал между несущими частотами различных станций. Для получения амплитудно-модулированного колебания колебание несущей частоты и модулирующий сигнал частоты подают на специальное устройство — Модулятор.
В случае частотной модуляции синусоидальным сигналом частота колебаний меняется по закону:
= 0 + cos t, (3)
где cos t — модулирующий сигнал, — т. н. девиация частоты. При частотной модуляции полоса частот модулированного колебания зависит от величины = /, называемой индексом частотной модуляции. При << 1 справедливо приближённое соотношение:
х — А0 (sin t + sin t cos t). (4)
В этом случае частотно-модулированное колебание, так же как и амплитудно-модулированное, состоит из несущей частоты и двух спутников с частотами + и — . Поэтому при малых полосы частот, занимаемые амплитудно-модулированным и частотно-модулированным сигналами, одинаковы. При больших индексах спектр боковых частот значительно увеличивается. Кроме колебаний с частотами ± , появляются колебания, частоты которых равны ± 2 , ± 3 и т. д. Полная ширина полосы частот, занимаемая частотно-модулированным колебанием с девиацией и частотой модуляции (с точностью, достаточной для практических целей), может считаться равной 2 + 2 . Эта полоса всегда шире, чем при амплитудной модуляции.
Преимуществом частотной модуляции перед амплитудной в технике связи является большая помехоустойчивость. Это качество частотной модуляции проявляется при >> 1, т. е. когда полоса частот, занимаемая частотно-модулированным сигналом, во много раз больше 2 . Поэтому частотно-модулированные колебания применяются для высококачественной передачи сигналов в диапазоне ультракоротких волн (УKB), где на каждую радиостанцию выделена полоса частот, в 15—20 раз большая, чем в диапазоне длинных, средних и коротких волн, на которых работают радиостанции с амплитудной модуляцией. Частотная модуляция применяется также для передачи звукового сопровождения телевизионных программ. Частотно-модулированные колебания могут быть получены изменением частоты задающего генератора (См. Задающий генератор) (см. Радиопередатчик).
В случае фазовой модуляции модулированное колебание имеет вид:
х = А0 sin (0 t + cos t). (5)
Если модулирующий сигнал синусоидальный, то форма модулированных колебаний и их спектральный состав для частотной и фазовой модуляции одинаковы. В случае несинусоидального модулирующего сигнала это различие четко выражено.
В многоканальных системах связи в качестве переносчика информации используется не гармоническое колебание, а периодическая последовательность радиоимпульсов, каждый из которых представляет собой цуг колебаний высокой частоты (рис. 3). Периодическая последовательность таких импульсов определяется четырьмя основными параметрами: амплитудой, частотой следования, длительностью (шириной) и фазой. В соответствии с этим возможны четыре типа импульсной модуляции: амплитудно-импульсная, частотно-импульсная, широтно-импульсная, фазово-импульсная (рис. 4). Импульсная модуляция обладает повышенной помехоустойчивостью по сравнению с модуляцией непрерывной синусоидальной несущей, зато полоса частот, занимаемая передающей радиостанцией с импульсной модуляцией, во много раз шире, чем при амплитудной модуляции (см. Импульсная модуляция, Импульсная радиосвязь).
Лит.: Харкевич А. А., Основы радиотехники, ч. 1, М., 1962; Гольдман С., Гармонический анализ, модуляция и шумы, пер. с англ., М., 1951; Рытов С. М., Модулированные колебания и волны, «Тр. Физического института АН СССР», 1940, т. 2, в. 1.
В. Н. Парыгин.

Рис. 1. Схематическое изображение модулированных колебаний: а — немодулированное колебание; б — модулирующий сигнал; в — амплитудно-модулированное колебание; г — частотно-модулированное колебание; д — фазово-модулированное колебание.

Рис. 2. Амплитудная модуляция синусоидальным сигналом, — несущая частота, — частота модулирующих колебаний, Амакс и Амин — максимальное и минимальное значения амплитуды.

Рис. 3. Радиоимпульс.

Рис. 4. Различные виды импульсной модуляции: а — немодулированная последовательность радиоимпульсов; б — передаваемый сигнал; в — амплитудно-импульсная модуляция; г — частотно-импульсная модуляция; д — широтно-импульсная модуляция; е — фазово-импульсная модуляция.

Физический энциклопедический словарь:

Медленное по сравнению с периодом колебаний изменение амплитуды, частоты или фазы колебаний по определ. закону. Соответственно различаются амплитудная, частотная и фазовая М. к. (рис. 1). Возможна и смешанная модуляция (напр., амплитудно-фазовая). При любом способе М. к. скорость изменения амплитуды, частоты или фазы должна быть достаточно малой, чтобы за период Т колебания модулируемый параметр почти не изменился.
М. к. применяется для передачи информации с помощью эл.-магн. волн радио- или оптич. диапазонов, а также акустич. волн. «Переносчиком» сигнала явл. синусоидальные колебания высокой частоты со. Амплитуда, частота или фаза этих колебаний, а в случае света и поляризация модулируются передаваемым сигналом (см. МОДУЛЯЦИЯ СВЕТА).
Рис. 1. а — гармонич. колебания несущей частоты; б — модулирующий сигнал; в — амплитудно-модулиров. колебание; г —частотно-модулиров. колебание; д — фазово-модулиров. колебание.
В простейшем случае модуляции амплитуды А синусоидальным сигналом модулиров. колебание (рис. 2) может быть записано в виде:
х=А0 (1+msinWl)sin(wt+j). (1)
Здесь А0 — амплитуда, w — частота исходного колебания, W — частота модуляции; величина m, наз.
Рис. 2. Колебание, модулированное по амплитуде синусоидальным сигналом.
г л у б и н о й м о д у л я ц и и, характеризует степень изменения амплитуды:
Частота модуляции W характеризует скорость изменения амплитуды колебаний. Эта частота должна быть во много раз меньше, чем несущая частота со. Модулиров. колебание уже не явл. строго синусоидальным. Амплитудно-модулиров. колебание представляет собой сумму трёх синусоидальных колебаний с частотами w, w+W, w-W. Частота w наз. несущей. Две остальные частоты наз. б о к о в ы м и ч а с т о т а м и (сателлитами). Амплитуда каждой из них равна mА0/2.
Любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а спектр частот. В простейшем случае М. к. синусоидальным сигналом этот спектр содержит лишь три составляющие — несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в спектре модулиров. колебания будут две б о к о в ы е п о л о с ы, частотный состав к-рых определяется частотным составом модулирующего сигнала. Поэтому каждая передающая станция занимает определённый частотный интервал. Во избежание помех несущие частоты разл. станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от хар-ра передаваемого сигнала; для радиовещания — 10 кГц, для телевидения — 6 МГц. Исходя из этих величин, выбирают интервал между несущими частотами разл. станций. Для получения амплитудно-модулиров. колебания колебание несущей частоты w и модулирующий сигнал частоты W подают на спец. устройство — м о д у л я т о р.
В случае частотной модуляции синусоидальным сигналом частота колебаний меняется по закону:
wl =w0+DwcosWt, (3)
где Dw — т. н. д е в и а ц и я ч а с т о т ы. При частотной модуляции полоса частот модулиров. колебания зависит от величины b=Dw/W, наз. и н д е к с о м ч а с т о т н о й м о д у л я ц н и. При b<-1 справедливо приближённое соотношение:
х»A0(sinwt+bsinWtcoswt). (4)
В этом случае частотно-модулиров. колебание, так же как и амплитудно-лодулированное, состоит из несущей частоты w и двух спутников с частотами w+W и w-W. Поэтому при малых b полосы частот, занимаемые шплитудно-модулированными и частотно-модулиров. сигналами, одинаковы. При больших индексах b спектр боковых частот значительно увеличивается. Кроме колебаний с частотами w±W появляются колебания, частоты к-рых равны w±2W, w±3W ( т. д. Полная ширина полосы частот, занимаемая частотно-модулиров. колебанием с девиацией Dw и частотой модуляции W (с точностью, достаточной для практич. целей), может считаться равной 2Dw+2W. т. е. шире, ;ем при амплитудной модуляции.
Преимуществом частотной модуляции перед амплитудной в технике вязи явл. большая помехоустойчивость. Это кач-во частотной модуляции проявляется при b->1, т. е. когда полоса частот, занимаемая частотномодулиров. сигналом, во много раз больше 2W. Поэтому частотно-модулиров. колебания используются для высококачеств. передачи сигналов в диапазоне УКВ, где на каждую радиостанцию выделена полоса частот, в 15—20 раз большая, чем в диапазоне длинных, средних и коротких радиоволн, на к-рых работают радиостанции с амплитудной модуляцией. Частотная модуляция применяется также для передачи звук. сопровождения телевизионных программ. Частотно-модулиров. колебания могут быть получены изменением частоты задающего генератора.
В случае фазовой модуляции модулиров. колебание имеет вид:
х=А0sin(wt +DsinWt). (5)
Такое колебание тождественно частотно-модулированному с синусоидальной модуляцией частоты по закону (3), причём Dj совпадает с индексом модуляции р. О фазовой модуляции говорят в случае, если Dj остаётся неизменным при изменении частоты модулирующего сигнала W, а о частотной, когда при этом не изменяется Dw=bW. В случае несинусоидального модулирующего сигнала различие между частотной и фазовой М. к. более чётко выражено (рис. 1, г, д).
Во мн. случаях модулирующий сиг-пал имеет вид импульса, а результирующий — цуга колебаний высокой
Рис. 3 Радиоимпульсы.
частоты или радиоимпульса (рис. 3). Радиоимпульсы используются, напр., в радиолокации, иногда с дополнит. частотной модуляцией несущего сигнала. В многоканальных системах связи в кач-ве переносчика информации используется не гармонич. колебание, а периодич. последовательность радиоимпульсов. Такая последовательность определяется четырьмя параметрами: амплитудой, частотой следования, длительностью (шириной) и фазой. В соответствии с этим возможны четыре типа импульсной модуляции: амплитудно-импульсная, частотно-импульсная, широтно-импульсная, фазово-импульсная. Импульсная модуляция обладает повышенной помехоустойчивостью по сравнению с модуляцией непрерывной синусоидальной несущей, зато полоса частот, занимаемая передающей радиостанцией с импульсной модуляцией во много раз шире, чем при амплитудной модуляции (см. ИМПУЛЬСНАЯ МОДУЛЯЦИЯ).
Модуляция используется не только для регулярных, но и для случайных сигналов, напр. в радиоастрономии модулируются шумовые сигналы.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru