Определение слова «ЛЮМИНЕСЦЕНЦИЯ»

Толковый словарь Ефремовой:

люминесценция ж.
Холодное свечение некоторых веществ, вызываемое различными причинами (воздействием света, радиоактивным и рентгеновским излучениями, прохождением электрического тока, химическими процессами и т.п.).

Большой энциклопедический словарь:

ЛЮМИНЕСЦЕНЦИЯ (от лат. lumen, родительный падеж luminis — свет и -escent — суффикс, означающий слабое действие) — свечение веществ, избыточное над их тепловым излучением при данной температуре и возбужденное какими-либо источниками энергии. Возникает под действием света, радиоактивного и рентгеновского излучений, электрического поля, при химических реакциях и при механических воздействиях. Примеры люминесценции — свечение гниющего дерева, некоторых насекомых, экрана телевизора. По механизму различают резонансную, спонтанную, вынужденную и рекомбинационную люминесценцию, по длительности — флуоресценцию (кратковременную люминесценцию) и фосфоресценцию (длительную люминесценцию).

Большая советская энциклопедия:

Люминесценция
(от латинского lumenсвет и -escent — суффикс, означающий слабое действие)
излучение, представляющее собой избыток над тепловым излучением (См. Тепловое излучение) тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения отделяет Л. от теплового равновесного излучения и показывает, что понятие Л. применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному, так как при сильном отклонении от равновесного состояния говорить о тепловом излучении или Л. не имеет смысла. Тепловое излучение в видимой области спектра заметно только при температуре тела в несколько сотен или тысяч градусов, в то время как люминесцировать оно может при любой температуре. Л. поэтому часто называется холодным свечением. Вторая часть определения (признак длительности) была введена С. И. Вавиловым, чтобы отделить Л. от различных видов рассеяния света (См. Рассеяние света), отражения света (См. Отражение света), параметрического преобразования света (см. Нелинейная оптика), тормозного излучения (См. Тормозное излучение) и Черенкова — Вавилова излучения (См. Черенкова-Вавилова излучение). От различных видов рассеяния Л. отличается тем, что при Л. между поглощением и испусканием происходят промежуточные процессы, длительность которых больше периода световой волны. В результате этого при Л. теряется корреляция между фазами колебаний поглощённого и излученного света.
Первоначально понятие Л. относилось только к излучению видимого света, в настоящее время оно применяется и к излучению в ближнем ультрафиолетовом и инфракрасном диапазонах.
Природные явления Л. — северное сияние, свечение некоторых насекомых, минералов, гниющего дерева — были известны с очень давних времён, однако систематически изучать Л. стали с конца 19 века (Э. и А. Беккерели, Ф. Ленард, У. Крукс и другие). Интерес к исследованию свечения различных веществ привёл В. К. Рентгена к открытию рентгеновских лучей, а в 1896 А. Беккерель, занимавшийся изучением люминофоров, открыл явление радиоактивности. В установлении основных законов Л., а также в развитии её применений исключительное значение имели работы советской школы физиков, созданной С. И. Вавиловым.
Л. можно классифицировать по типу возбуждения, механизму преобразования энергии, временным характеристикам свечения. По виду возбуждения различают фотолюминесценцию (возбуждение светом); радиолюминесценцию (возбуждение проникающей радиацией), частными случаями которой являются рентгенолюминесценция (возбуждение рентгеновскими лучами), Катодолюминесценция (возбуждение электронным пучком), ионолюминесценция (возбуждение ускоренными ионами), альфа-люминесценция (возбуждение альфа-частицами) и так далее; электролюминесценцию (возбуждение электрическим полем); триболюминесценцию (возбуждение механическими деформациями); хемилюминесценцию (возбуждение в результате химических реакций); кандолюминесценцию (возбуждение при рекомбинации радикалов на поверхности).
По длительности свечения различают флуоресценцию (быстро затухающую Л.) и фосфоресценцию (длительную Л.). Деление это условное, так как нельзя указать строго определённой временной границы: она зависит от временного разрешения регистрирующих приборов.
По механизму элементарных процессов различают резонансную, спонтанную, вынужденную и рекомбинационную Л. Элементарный акт Л. состоит из поглощения энергии с переходом атома (молекулы) из основного состояния 1 (рис. 1) в возбуждённое состояние 3, безызлучательного перехода на уровень 2 и излучательного перехода в основное состояние 1. В частном случае излучение Л. может происходить при переходе атома (молекулы) с уровня 3 на уровень 1. В этом случае Л. называют резонансной. Резонансная Л. наблюдается чаще всего в атомных парах (Hg, Cd, Na и других), в некоторых простых молекулах, примесных кристаллах.
В большинстве случаев вероятность перехода атома (молекулы) с уровня 3 на уровень 2 больше вероятности прямого перехода на основной уровень 1. Уровень 2 чаще всего лежит ниже уровня поглощения 3, поэтому часть энергии теряется на тепло (возбуждаются колебания атомов) и квант света Л. имеет меньшую энергию (и большую длину волны), чем кванты возбуждающего света (Стокса правило). Однако возможно наблюдение антистоксовой Л. В этом случае за счёт поглощения колебательной энергии молекула переходит на более высокий относительно уровня 3 излучающий уровень 2; энергия испущенного кванта при антистоксовой Л. больше энергии возбуждающего кванта, её интенсивность мала.
Уровень излучения 2 может принадлежать как тому же атому (молекуле), который поглотил энергию возбуждения (в таком случае атом называется центром свечения, а переход внутрицентровым), так и другим атомам. В простейшем случае, когда энергия возбуждения остаётся в том же атоме, Л. называется спонтанной. Этот вид Л. характерен для атомов и молекул в парах и растворах и для примесных атомов в кристаллах. В некоторых случаях атом (молекула), прежде чем перейти на уровень излучения 2 (рис. 2), оказывается на промежуточном метастабильном уровне 4 (см. Метастабильное состояние) и для перехода на уровень излучения ему необходимо сообщить дополнительную энергию, например энергию теплового движения или инфракрасного света. Л., возникающая при таких процессах, называется метастабильной (стимулированной).
Процесс Л. в различных веществах отличается в основном механизмом перехода частицы с уровня поглощения 3 на уровень излучения 2. Передача энергии другим атомам (молекулам) осуществляется электронами при электронно-ионных ударах и при процессах ионизации и рекомбинации или обменным путём при непосредственном столкновении возбуждённого атома с невозбуждённым. Из-за малой концентрации атомов в газах процессы резонансной и обменной передачи энергии играют малую роль. Они становятся существенными в конденсированных средах. В них энергия возбуждения может передаваться также с помощью колебаний ядер. И, наконец, в кристаллах определяющей становится передача энергии с помощью электронов проводимости, дырок и электронно-дырочных пар (Экситонов). Если заключительным актом передачи энергии является рекомбинация (восстановление частиц, например электронов и ионов или электронов и дырок), то сопровождающая этот процесс Л. называется рекомбинационной.
Способность к Л. обнаруживают различные вещества (см. Люминофоры). Чтобы вещество было способно люминесцировать, его спектры должны носить дискретный характер, то есть его уровни должны быть разделены зонами запрещенных энергий. Поэтому металлы в твёрдой и жидкой фазе, обладающие непрерывным энергетическим спектром, не дают Л.: энергия возбуждения в металлах непрерывным образом переходит в тепло.
Вторым необходимым условием Л. является превышение вероятности излучательных переходов над вероятностью безызлучательных. Повышение вероятности безызлучательных переходов влечёт за собой тушение Л. Вероятность безызлучательных переходов зависит от многих факторов, например возрастает при повышении температуры (температурное тушение), концентрации люминесцирующих молекул (концентрационное тушение) или примесей (примесное тушение). Такое тушение Л. связано с передачей энергии возбуждения молекулам тушителя или её потерей при взаимодействии люминесцирующих молекул между собой и с тепловыми колебаниями среды. Следовательно, способность к Л. зависит как от природы люминесцирующего вещества и его фазового состояния, так и от внешних условий. При низком давлении люминесцируют пары металлов и благородные газы (это явление применяется в газоразрядных источниках света, люминесцентных лампах и газовых лазерах). Л. жидких сред в основном характерна для растворов органических веществ.
Яркость Л. кристаллов зависит от наличия в них примесей (так называемых активаторов), энергетические уровни которых могут служить уровнями поглощения, промежуточными или излучательными уровнями. Роль этих уровней могут выполнять также энергетические зоны (валентная и проводимости). Кристаллы, обладающие Л., называются кристаллофосфорами (См. Кристаллофосфоры).
В кристаллофосфорах возбуждение светом, электрическим током или пучком частиц создаёт свободные электроны, дырки и эксптоны (рис. 3). Электроны могут мигрировать по решётке, оседая на ловушках 4. Л., происходящая при рекомбинации свободных электронов с дырками, называется межзонной (а). Если рекомбинирует электрон с дыркой, захваченной центром свечения (атомом примеси или дефектом решётки), происходит Л. центра (б). Рекомбинация экситонов даёт экситонную Л. (в). Спектр Л. кристаллофосфоров состоит из межзонной, экситонной и примесной полос.
Основные физические характеристики Л.: способ возбуждения (для фотолюминесценции — спектр возбуждения); спектр излучения (изучение спектров излучения Л. составляет часть спектроскопии); состояние поляризации излучения; выход излучения, то есть отношение поглощённой энергии к излученной (для фотолюминесценции вводится понятие квантового выхода Л. — отношения числа излученных квантов к числу поглощённых). Поляризация Л. связана с ориентацией и мультипольностью излучающих и поглощающих атомных систем.
Кинетика Л., то есть зависимость свечения от времени, интенсивности излучения I, от интенсивности возбуждения, а также зависимость Л. от различных факторов (например, температуры) служит важной характеристикой Л. Кинетика Л. в сильной степени зависит от элементарного процесса. Кинетика затухания резонансной Л. при малой плотности возбуждения и малой концентрации возбуждённых атомов носит экспоненциальный характер: I = l0 е-t/, где характеризует время жизни на уровне возбуждения и равно обратной величине вероятности спонтанного перехода в единицу времени (см. Квантовые переходы, Эйнштейна коэффициенты), t — длительность свечения. При большой плотности возбуждения наблюдается отклонение от экспоненциального закона затухания, вызванное процессами вынужденного излучения. Квантовый выход резонансной Л. обычно близок к 1. Кинетика затухания спонтанной Л. также обычно носит экспоненциальный характер. Кинетика рекомбинационной Л. сложна и определяется вероятностями рекомбинации, захвата и освобождения электронов ловушками, зависящими от температуры. Наиболее часто встречается гиперболический закон затухания: I = I0 / (1 + pt) (р — постоянная величина, обычно принимает значение от 1 до 2). Время затухания Л. изменяется в широких пределах — от 10-8 сек до нескольких часов. Если происходят процессы тушения, то сокращаются выход Л. и время её затухания. Исследование кинетики тушения Л. даёт важные сведения о процессах взаимодействия молекул и миграции энергии (См. Миграция энергии).
Изучение спектра, кинетики и поляризации излучения Л. позволяет исследовать спектр энергетического состояния вещества, пространственную структуру молекул, процессы миграции энергии. Для исследования Л. применяются приборы, регистрирующие свечение и его распределение по спектру, — спектрофотометры. Для измерения времён затухания применяются тауметры и флуорометры. Люминесцентные методы являются одними из наиболее важных в физике твёрдого тела. Л. некоторых веществ лежит в основе действия лазеров. Л. ряда биологических объектов позволила получить информацию о процессах, происходящих в клетках на молекулярном уровне (см. Биолюминесценция). Для исследования кристаллофосфоров весьма плодотворно параллельное изучение их Л. и проводимости. Широкое исследование Л. обусловлено также важностью её практических применений. Яркость Л. и её высокий энергетический выход позволили создать люминесцентные источники света с высоким кпд, основанные на электролюминесценции и фотолюминесценции (см. Люминесцентная лампа). Яркая Л. ряда веществ обусловила развитие метода обнаружения малых количеств примесей, сортировки веществ по их люминесцентным признакам и изучение смесей, например нефти (см. Люминесцентный анализ). Катодолюминесценция лежит в основе свечения экранов электронных приборов (осциллографов, телевизоров, локаторов и так далее), в рентгеноскопии используется рентгенолюминесценция. Для ядерной физики очень важным оказалось использование радиолюминесценции (см. Люминесцентная камера, Сцинтилляционный счётчик). Л. широко применяется для киносъёмки и в дефектоскопии (см. Люминесцентная киносъёмка, Дефектоскопия). Люминесцентными красками окрашивают ткани, дорожные знаки и так далее.
Лит.: Прингсгейм П., Флуоресценция и фосфоресценция, перевод с английского, М., 1951; Вавилов С. И., Собрание сочинений, т, 2, М., 1952, с. 20, 28, 29; Левшин В. Л., Фотолюминесценция жидких и твердых веществ, М. — Л., 1951; Антонов-Романовский В. В., Кинетика фотолюминесценции кристаллофосфоров, М., 1966; Адирович Э. И., Некоторые вопросы теории люминесценции кристаллов, М. — Л., 1951; Фок М. В., Введение в кинетику люминесценции кристаллофосфоров, М., 1964; Кюри Д., Люминесценция кристаллов, перевод с французского, М., 1961; Бьюб Р., Фотопроводимость твердых тел, перевод с английского, М., 1962.
Э. А. Свириденков.

Рис. 1. Схема квантовых переходов при элементарном процессе люминесценции: 1 — основной энергетический уровень; 2 — уровень излучения; 3 — уровень возбуждения. Переход 3—1, показанный пунктирной стрелкой, соответствует резонансной люминесценции, переход 2—1 — спонтанной люминесценции.

Рис. 2. Схема квантовых переходов при метастабильной (стимулированной) люминесценции. Для перехода с метастабильного уровня 4 на излучающий уровень 2 атом должен поглотить дополнительную энергию; 1 — основной уровень; 3 — уровень возбуждения.

Рис. 3. Схема энергетических переходов при люминесценции кристаллофосфоров: 1 — валентная зона, 3 — зона проводимости. Переход 1—3 соответствует поглощению энергии, переходы 3—4 и 4—3 — захвату и освобождению электрона метастабильным уровнем (ловушкой 4). Переход (а) соответствует межзонной люминесценции, (б) — люминесценции центра, (в) — экситонной люминесценции (2 — уровень энергии экситона).

Большой словарь иностранных слов:

[< лат. lumen (luminis) свет] – холодное свечение вещества; люминесценция вызывается различными причинами: освещением вещества, прохождением в нем электрического тока (в газах и парах), химическими процессами; спектр люминесценции, в отличие от теплового излучения, – линейчатый или полосатый.

Толковый словарь Кузнецова:

люминесценция
ЛЮМИНЕСЦЕНЦИЯ -и; ж. [от лат. lumen (luminis) — свет и escentia — суффикс, обозначающий слабое действие] Физ. Свечение газа, жидкости или твёрдого тела, обусловленное не нагревом тела, а нетепловым возбуждением его атомов и молекул.

Малый академический словарь:

люминесценция
-и, ж. физ.
Свечение газа, жидкости или твердого тела, обусловленное не нагревом тела, а нетепловым возбуждением его атомов и молекул.
[От лат. lumen, luminis — свет]

Микробиология. Словарь терминов:

Свечение веществ (люминофоров), возбуждаемое каким–либо источником энергии (напр., ультрафиолетовым излучением).

Орфографический словарь Лопатина:

орф.
люминесценция, -и

Физический энциклопедический словарь:

(от лат. lumen, род. п. luminis — свет и -escent — суффикс, означающий слабое действие), излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения отделяет Л. от теплового равновесного излучения и показывает, что понятие «Л.» применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному, т. к. при сильном отклонении от равновесного состояния говорить о тепловом излучении или Л. не имеет смысла. Тепловое излучение в видимой области спектра заметно только при темп-ре тела в неск. сотен или тысяч градусов, в то время как люминесцировать оно может при любой темп-ре, поэтому Л. часто наз. холодным свечением.
Вторая часть определения (признак длительности) была введена С. И. Вавиловым, чтобы отделить Л. от разл. видов рассеяния света, отражения света, параметрич. преобразования света (см. НЕЛИНЕЙНАЯ ОПТИКА), тормозного излучения и Черенкова — Вавилова излучения. От разл. видов рассеяния Л. отличается тем, что при ней между поглощением и испусканием происходят промежуточные процессы, длительность к-рых больше периода световой волны. В результате этого при Л. теряется корреляция между фазами колебаний поглощённого и излучённого света.
Излучение Л. лежит в видимом, ближнем УФ и ИК диапазонах. Природные явления Л.— северное сияние, свечение нек-рых насекомых, минералов, гниющего дерева — были известны ещё в древности, систематически изучать Л. стали с 19 в.
Л. можно классифицировать по типу возбуждения, механизму преобразования энергии, временным хар-кам свечения. По виду возбуждения различают фотолюминесценцию (возбуждение светом), радиолюминесценцию (возбуждение проникающей радиацией, к ней, в частности, относятся рентгенолюминесценция, катодолюминесценция, ионолюминесценция, a-люминесценция), электролюминесценцию (возбуждение электрич. полем), триболюминесценцию (возбуждение при механич. воздействиях), хемилюминесценцию (возникает при хим. реакциях).
По длительности свечения различают флуоресценцию (быстро затухающую Л.) и фосфоресценцию (длит. Л.). Это деление условное, т. к. нельзя указать строго определённой временной границы: она зависит от временного разрешения регистрирующих приборов.
По механизму элем. процессов различают резонансную, спонтанную, вынужденную и рекомбинационную Л. Элем. акт Л. состоит из поглощения энергии с переходом атома (молекулы) с осн. уровня анергии 1 (рис. 1) на возбуждённый уровень 3, безызлучат. перехода 3 ® 2 и излучат. перехода 2 ®1. В ат. парах (Hg, Cd, Na и др.), нек-рых простых молекулах и примесных кристаллах излучение Л. может происходить непосредственно при переходе 3®1 (резонансная Л.).
Рис. 1. Схема квант. переходов при элем. процессе люминесценции: 1 — осн. уровень энергии; 2 — уровень излучения; 3 — уровень возбуждения. Пунктирной стрелкой показан квант. переход, соответствующий резонансной люминесценции.
Чаще вероятность перехода 3®2 больше вероятности прямого перехода 3®1. Уровень 2 обычно лежит ниже уровня поглощения 3, часть энергии возбуждения теряется в энергию колебания атомов (переходит в теплоту), и квант света Л. имеет меньшую энергию (и большую длину волны), чем кванты возбуждающего света — с т о к с о в а Л. (см. СТОКСА ПРАВИЛО). Однако во мн. случаях возможна а н т и с т о к с о в а Л., когда за счёт поглощения извне колебат. энергии молекула переходит на более высокий относительно уровня 3 излучающий уровень 2. Энергия испущенного кванта при антистоксовой Л. больше энергии возбуждающего кванта, её интенсивность мала.
Уровень 2 может принадлежать как тому же атому (молекуле), к-рый поглотил энергию возбуждения (такой атом наз. центром люминесценции, а переход внутрицентровым), так и др. атомам. В первом случае Л. наз. спонтанной. Этот вид Л., как и резонансная Л., характерен для атомов и молекул паров и р-ров, а также для примесных атомов в кристаллах. В нек-рых случаях атом (молекула), прежде чем перейти на уровень излучения 2, оказывается на промежуточном метастабильном уровне 4 (рис. 2; (см. МЕТАСТАБИЛЬНОЕ СОСТОЯНИЕ)) и для перехода на уровень 2 ему необходимо сообщить дополнит. энергию, напр. энергию теплового движения или света. Л., возникающая при таких процессах, наз. м е т а с т а б и л ь н о й.
Рис. 2. Схема квант. переходов при метастабильной (стимулированной) люминесценции: 1, 2, 3 — то же, что на рис. 1;4 — метастабильный уровень.
Процесс Л. в разл. в-вах отличается в осн. механизмом перехода ч-цы с уровня поглощения 3 на уровень излучения 2. Передача энергии др. атомам (молекулам) осуществляется эл-нами при электронно-ионных ударах, при процессах ионизации и рекомбинации или обменным путём при непосредств. столкновении возбуждённого атома с невозбуждённым. Из-за малой концентрации атомов в газах процессы резонансной и обменной передачи энергии играют малую роль. Они становятся существенными в конденсиров. средах, где энергия возбуждения может передаваться также с помощью колебаний ядер. И наконец, в кристаллах определяющей становится передача энергии с помощью эл-нов проводимости, дырок и электронно-дырочных пар (экситонов). Если заключит. актом передачи энергии явл. рекомбинация (восстановление ч-ц, напр. эл-нов и ионов или эл-нов и дырок), то сопровождающая этот процесс Л. наз. р е к о м б и н а ц и о н н о й.
В-ва, способные к Л., наз. люминофорами, они должны иметь дискретный энергетич. спектр. В-ва, обладающие непрерывным энергетич. спектром (напр., металлы), не люминесцируют: энергия возбуждения в них непрерывным образом переходит в теплоту.
Второе необходимое условие Л.— превышение вероятности излучат. переходов над вероятностью безызлучательных. Повышение вероятности безызлучат. переходов влечёт за собой тушение люминесценции. Эта вероятность зависит от мн. факторов, возрастает, напр., при повышении темп-ры (температурное тушение), концентрации люминесцирующих молекул (концентрац. тушение) или примесей (примесное тушение). Т. о., тушение Л. зависит как от природы люминесцирующего в-ва и его фазового состояния, так и от внеш. условий. При низком давлении люминесцируют пары металлов и благородные газы, что применяется в газоразрядных источниках света, люминесцентных лампах и газовых лазерах. Л. жидких сред в осн. характерна для р-ров органич. в-в.
Кристаллы, способные люминесцировать, наз. кристаллофосфорами, яркость их Л. зависит от наличия в них примесей (т. н. активаторов), уровни энергии к-рых могут служить уровнями поглощения, промежуточными или излучат. уровнями. Роль этих уровней могут выполнять также валентная зона и зона проводимости.
Рис. 3. Схема квант. переходов при люминесценции кристаллофосфоров: 1 — валентная зона: 3 — зона проводимости. Переход 1®3 соответствует поглощению энергии возбуждения, переходы 3® 4 и 4®3 — захвату в освобождению эл-на метастабильным уровнем («ловушкой» 4). Переход (а) соответствует межзонной люминесценции, (б) — люминесценции центра, (в) — экситонной люминесценции (2 — уровень энергии экситона).
В кристаллофосфорах возбуждение светом, электрич. током или пучком ч-ц может создавать свободные эл-ны, дырки и экситоны (рис. 3). Эл-ны могут мигрировать по решётке, оседая на «ловушках» 4. Л., происходящая при рекомбинации свободных эл-нов с дырками, наз. м е ж з о н н о й или к р а е в о й (рис. 3, в). Если рекомбинирует эл-н с дыркой, захваченной центром свечения (атомом примеси или дефектом решётки), происходит Л. центра (рис. 3, б). При рекомбинации экситонов возникает э к с и т о н н а я Л. (рис. 3, в).
Осн. физ. хар-ки Л.: способ возбуждения (для фотолюминесценции — спектр возбуждения); спектр испускания (изучение спектров испускания Л. составляет часть спектроскопии); состояние поляризации излучения; выход Л., т. е. отношение поглощённой энергии к излучённой (для фотолюминесценции вводится понятие квантового выхода Л.— отношения числа излучённых квантов к числу поглощённых).
Важная хар-ка — кинетика Л., т. е. зависимость свечения от времени, интенсивности излучения I от интенсивности возбуждения, а также зависимость Л. от разл. факторов (напр., темп-ры). Кинетика Л. сильно зависит от типа элем. процесса.
Кинетика затухания резонансной Л. при малой плотности возбуждения и малой концентрации возбуждённых атомов носит экспоненц. хар-р: I=I0e-t/t, где I0 — нач. интенсивность излучения, t — характеризует время жизни на уровне возбуждения, t — длительность свечения. При большой интенсивности возбуждения наблюдается отклонение от экспоненц. закона затухания, вызванное процессами вынужденного излучения. Квант. выход резонансной Л. обычно близок к 1. Кинетика затухания спонтанной Л. также обычно носит экспоненц. хар-р. Кинетика рекомбинационной Л. сложна и определяется зависящими от темп-ры вероятностями процессов рекомбинации, захвата и освобождения эл-нов «ловушками». Наиболее часто встречается гиперболич. закон затухания: I= I0/(1+pt)a (p — пост. величина, a — обычно принимает значение от 1 до 2). Время затухания Л. варьируется в широких пределах от 10-9 с до неск. ч. Если происходят процессы тушения, то сокращаются выход и время затухания. Исследование кинетики тушения Л. позволяет судить о процессах вз-ствия молекул И миграции энергии.
Поляризация Л. связана с ориентацией и мультипольностью излучающих и поглощающих ат. систем.
Изучая физ. параметры Л., получают сведения об энергетич. состоянии в-ва, пространств. структуре молекул, процессах миграции энергии. Для исследования Л. применяются спектральные приборы, регистрирующие её спектр. распределение, флуорометры, измеряющие время затухания Л. (время, в течение к-рого интенсивность Л. падает в е раз). Люминесцентные методы явл. одними из наиб. важных в физике тв. тела. Л. лежит в основе действия лазеров. Биолюминесценция позволила получить информацию о процессах, происходящих в клетках на мол. уровне. Для исследования кристаллофосфоров весьма плодотворно параллельное изучение их Л. И проводимости. Широкое исследование Л. обусловлено также важностью её практич. применений. Яркость Л. и её высокий энергетич. выход позволили создать люминесцентные лампы с высоким кпд. Яркая Л. ряда в-в обусловила развитие метода обнаружения малых количеств примесей, сортировки в-в по их Л. и изучение смесей, напр. нефти (см. ЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ). Катодолюминесценция лежит в основе свечения экранов осциллографов, телевизоров, локаторов и т. д., в рентгеноскопии используется рентгенолюминесценция. Для яд. физики очень важным оказалось использование радиолюминесценции (см. СЦИНТИЛЛЯЦИОННЫЙ СЧЁТЧИК). Л. применяется в дефектоскопии, люминесцентными красками окрашивают ткани, дорожные знаки и т. д.

Научно-технический словарь:

ЛЮМИНЕСЦЕНЦИЯ, см. также ФЛУОРЕСЦЕНЦИЯ; ФОСФОРЕСЦЕНЦИЯ.

Грамматический словарь Зализняка:

Люминесценция, люминесценции, люминесценции, люминесценций, люминесценции, люминесценциям, люминесценцию, люминесценции, люминесценцией, люминесценциею, люминесценциями, люминесценции, люминесценциях

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru