Определение слова «Дирихле интеграл»

Большая советская энциклопедия:

Дирихле интеграл
(по имени П. Г. Л. Дирихле)
название интегралов нескольких типов.
1) Интеграл

Этот Д. и. называется также разрывным множителем Дирихле и равен /2 при < , /4 при = и 0 при > . Таким образом, Д. и. (1) является разрывной функцией от параметров и . Дирихле использовал интеграл (1) в своих исследованиях о притяжении эллипсоидов. Впрочем, этот интеграл встречается ранее у Ж. Фурье, С. Пуассона и А. Лежандра.
2) Интеграл

где

есть так называемое ядро Дирихле. Этот Д. и. равен n-й частичной сумме

ряда Фурье функции f (х). Формула (2) является одной из важнейших формул теории рядов Фурье, в частности, позволившей Дирихле установить, что ряд Фурье функции, имеющей конечное число максимумов и минимумов, сходится в каждой точке.
3) Интеграл

Подробнее см. Дирихле принцип (в теории гармонических функций).

Математическая энциклопедия:

Функционал, связанный с решением Дирихле задачи для уравнения Лапласа вариационным методом. Пусть Q- ограниченная область в Rn с границей Г класса С 1, х=( х 1, . . ., х п), а функция (см. Соболева пространство). Д. и. для функции и(х)наз. выражение Для некоторой заданной на Г функции j(х)рассматривается множество pj функций из W12(W), к-рые удовлетворяют граничному условию u|x О Г= j. Если множество pj не пусто, то существует единственная функция для которой и эта функция является гармонической в области Q. Верно и обратное утверждение: если гармонич. функция и 0 (х)принадлежит множеству pj, то на ней достигается inf D[u]. Таким образом, и а (х)является обобщенным из решением задачи Дирихле для уравнения Лапласа. Однако не для всякой функции j можно найти такую функцию и 0 (х). Существуют даже непрерывные на Г функции, для к-рых множество pj пусто, т. е. в пространстве не существует ни одной функции и(х), удовлетворяющей условию u|x О Г= j. Классич. решение задачи Дирихле для уравнения Лапласа с такой граничной функцией j не может иметь конечного Д. и. и не является обобщенным решением из пространства Лит.:[1] Михайлов В. П., Дифференциальные уравнения в частных производных, М., 1976. А. К. Гущин.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru