Определение слова «Радиационные пояса Земли»

Большая советская энциклопедия:

Радиационные пояса Земли
Внутренние области земной магнитосферы, в которых магнитное поле Земли удерживает заряженные частицы (Протоны, Электроны, Альфа-частицы), обладающие кинетической энергией от десятков кэв до сотен Мэв (в разных областях Р. п. З. энергия частиц различна, см. ст. Земля, раздел Строение Земли). Выходу заряженных частиц из Р. п. З. мешает особая конфигурация силовых линий геомагнитного поля, создающего для заряженных частиц магнитную ловушку (См. Магнитные ловушки). Захваченные в магнитную ловушку Земли частицы под действием Лоренца силы (См. Лоренца сила) совершают сложное движение, которое можно представить как колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно с одновременным более медленным перемещением (долготным дрейфом) вокруг Земли (рис. 1). Когда частица движется по спирали в сторону увеличения магнитного поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости частицы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля. Наконец, в некоторой точке (её называют зеркальной) происходит «отражение» частицы. Она начинает двигаться в обратном направлении — к сопряжённой зеркальной точке в др. полушарии. Одно колебание вдоль силовой линии из Северного полушария в Южное протон с энергией ~ 100 Мэв совершает за время ~ 0,3 сек. Время нахождения («жизни») такого протона в геомагнитной ловушке может достигать 100 лет (~ 3109 сек), за это время он может совершить до 1010 колебаний. В среднем захваченные частицы большой энергии совершают до нескольких сотен миллионов колебаний из одного полушария в другое. Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии частицы совершают полный оборот вокруг Земли за время от нескольких минут до суток. Положительные ионы дрейфуют в западном направлении, электроны — в восточном. Движение частицы по спирали вокруг силовой линии магнитного поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступательного перемещения этого центра вдоль силовой линии.
Структура радиационных поясов. При движении заряженной частицы в магнитном поле Земли её мгновенный центр вращения находится на одной и той же поверхности, получившей название магнитной оболочки (рис. 2). Магнитную оболочку характеризуют параметром L, его численное значение в случае дипольного поля (см. Диполь) равно расстоянию, выраженному в радиусах Земли, на которое отходит магнитная оболочка (в экваториальной плоскости диполя) от центра диполя. Для реального магнитного поля Земли (см. Земной магнетизм) параметр L приближённо сохраняет такой же простой смысл. Энергия частиц связана со значением параметра L; на оболочках с меньшими значениями L находятся частицы, обладающие большими энергиями. Это объясняется тем, что частицы высоких энергий могут быть удержаны лишь сильным магнитным полем, т. е. во внутренних областях магнитосферы. Обычно выделяют внутренний и внешний Р. п. 3., пояс протонов малых энергий (пояс кольцевого тока) и зону квазизахвата частиц (рис. 3), или авроральной радиации (по лат. названию полярных сияний). Внутренний радиационный пояс характеризуется наличием протонов высоких энергий (от 20 до 800 Мэв) с максимумом плотности потока протонов с энергией Ep > 20 Мэв до 104 протон/(см2секстер) на расстоянии L ~ 1,5. Во внутреннем поясе присутствуют также электроны с энергиями от 20—40 кэв до 1 Мэв; плотность потока электронов с Ee 40 кэв составляет в максимуме ~ 106—107 электрон/(см2секстер).
Внутренний пояс расположен вокруг Земли в экваториальных широтах (рис. 4).
С внешней стороны этот пояс ограничен магнитной оболочкой с L ~ 2, которая пересекается с поверхностью Земли на геомагнитных широтах ~ 45°. Ближе всего к поверхности Земли (на высоты до 200—300 км) внутренний пояс подходит вблизи Бразильской магнитной аномалии, где магнитное поле сильно ослаблено; над географическим экватором нижняя граница внутреннего пояса отстоит от Земли на 600 км над Америкой и до 1600 км над Австралией. На нижней границе внутреннего пояса частицы, испытывая частые столкновения с атомами и молекулами атмосферных газов, теряют свою энергию, рассеиваются и «поглощаются» атмосферой.
Внешний Р. п. З. заключён между магнитными оболочками c L ~ 3 и L ~ 6 с максимальной плотностью потока частиц на L ~ 4,5. Для внешнего пояса характерны электроны с энергиями 40—100 кэв, поток которых в максимуме достигает 106—107 электрон/(см2секстер). Среднее время «жизни» частиц внешнего Р. п. З. составляет 105—107 сек. В периоды повышенной солнечной активности во внешнем поясе присутствуют также электроны больших энергий (до 1 Мэв и выше).
Пояс протонов малых энергий (Ep ~ 0,03—10 Мэв) простирается от L ~ 1,5 до L ~ 7—8. Зона квазизахвата, или авроральной радиации, расположена за внешним поясом, она имеет сложную пространственную структуру, обусловленную деформацией магнитосферы солнечным ветром (См. Солнечный ветер) (потоком заряженных частиц от Солнца). Основной составляющей частиц зоны квазизахвата являются электроны и протоны с энергиями E < 100 кэв. Внешний пояс и пояс протонов малых энергий ближе всего (до высоты 200—300 км) подходит к Земле на широтах 50—60°. На широты выше 60° проецируется зона квазизахвата, совпадающая с областью максимальной частоты появления полярных сияний (См. Полярные сияния). В некоторые периоды отмечается существование узких поясов электронов высоких энергий (Ee ~ 5 Мэв) на магнитных оболочках с L ~ 2,5—3,0.
Энергетические спектры для всех частиц Р. п. З. описываются функциями вида: N (E) ~ E, где N (E) — число частиц с данной энергией E, или N (E) ~ с характерными значениями — 1,8 для протонов в интервале энергий от 40 до 800 Мэв, E0 ~ 200—500 кэв для электронов внешних и внутренних поясов и E0 ~ 100 кэв для протонов малых энергий.
История открытия радиационных поясов. Исторически первыми были открыты внутренний пояс (группой американских учёных под руководством Дж. Ван Аллена, 1958) и внешний пояс (сов. учёными во главе с С. Н. Верновым и А. Е. Чудаковым, 1958). Потоки частиц Р. п. З. были зарегистрированы приборами (Гейгера — Мюллера счётчиками), установленными на искусственных спутниках Земли. По существу, Р. п. З. не имеют четко выраженных границ, т.к. каждый тип частиц в соответствии со своей энергией образует «свой» радиационный пояс, поэтому правильнее говорить об одном едином радиационном поясе Земли. Разделение Р. п. З. на внешний и внутренний, принятое на первой стадии исследований и сохранившееся до настоящего времени из-за ряда различий в их свойствах, по существу, условно.
Принципиальная возможность существования магнитной ловушки в магнитном поле Земли была показана расчётами К. Стёрмера (1913) и Х. Альфвена (1950), но лишь эксперименты на спутниках показали, что ловушка реально существует и заполнена частицами высоких энергий.
Пополнение радиационных поясов Земли частицами и механизм потери частиц. Происхождение захваченных частиц с энергией, значительно превышающей среднюю энергию теплового движения атомов и молекул атмосферы, связывают с действием нескольких физических механизмов: распадом Нейтронов, созданных космическими лучами (См. Космические лучи) в атмосфере Земли (образующиеся при этом протоны пополняют внутренние Р. п. З.); «накачкой» частиц в пояса во время геомагнитных возмущений (магнитных бурь (См. Магнитные бури)), которая в первую очередь обусловливает существование электронов внутреннего пояса; ускорением и медленным переносом частиц солнечного происхождения из внешнего во внутренние области магнитосферы (так пополняются электроны внешнего пояса и пояс протонов малых энергий). Проникновение частиц солнечного ветра в Р. п. З. возможно через особые точки магнитосферы (т. н. дневные полярные каспы, см. рис. 5), а также через т. н. нейтральный слой в хвосте магнитосферы (с её ночной стороны). В области дневных каспов и в нейтральном слое хвоста геомагнитное поле резко ослаблено и не является существенным препятствием для заряженных частиц межпланетной плазмы. Частично Р. п. З. пополняются также за счёт захвата протонов и электронов солнечных космических лучей, проникающих во внутренние области магнитосферы. Перечисленных источников частиц, по-видимому, достаточно для создания Р. п. З. с характерным распределением потоков частиц. В Р. п. З. существует динамическое равновесие между процессами пополнения поясов и процессами потерь частиц. В основном частицы покидают Р. п. З. из-за потери своей энергии на ионизацию (См. Ионизация) (эта причина ограничивает, например, пребывание протонов внутреннего пояса в магнитной ловушке временем ~ 109 сек), из-за рассеяния частиц при взаимных столкновениях и рассеяния на магнитных неоднородностях и плазменных волнах различного происхождения (см. Плазма). Рассеяние может сократить время «жизни» электронов внешнего пояса до 104—105 сек. Эти эффекты приводят к нарушению условий стационарного движения частиц в геомагнитном поле (т. н. адиабатических инвариантов) и к «высыпанию» частиц из Р. п. З. в атмосферу вдоль силовых линий магнитного поля.
Связь процессов в радиационных поясах Земли с другими процессами в околоземном пространстве. Радиационные пояса испытывают различные временные вариации: расположенный ближе к Земле и более стабильный внутренний пояс — незначительные, внешний пояснаиболее частые и сильные. Для внутреннего Р. п. З. характерны небольшие вариации в течение 11-летнего цикла солнечной активности. Внешний пояс заметно меняет свои границы и структуру даже при незначительных возмущениях магнитосферы. Пояс протонов малых энергий занимает в этом смысле промежуточное положение. Особенно сильные вариации Р. п. З. претерпевают во время магнитных бурь (См. Магнитные бури). Сначала во внешнем поясе резко возрастает плотность потока частиц малых энергий и в то же время теряется заметная доля частиц больших энергий. Затем происходит захват и ускорение новых частиц, в результате которых в поясах появляются потоки частиц на расстояниях обычно более близких к Земле, чем в спокойных условиях. После фазы сжатия происходит медленное, постепенное возвращение Р. п. З. к исходному состоянию. В периоды высокой солнечной активности магнитные бури происходят очень часто, так что эффекты от отдельных бурь накладываются друг на друга, и максимум внешнего пояса в эти периоды располагается ближе к Земле (L ~ 3,5), чем в периоды минимума солнечной активности (L ~ 4,5—5,0).
Высыпание частиц из магнитной ловушки, в особенности из зоны квазизахвата (авроральной радиации), приводит к усилению ионизации ионосферы, а интенсивное высыпание — к полярным сияниям. Запас частиц в Р. п. З., однако, недостаточен для поддержания продолжительного полярного сияния, и связь полярных сияний с вариациями потоков частиц в Р. п. З. говорит лишь об их общей природе, т. е. о том, что во время магнитных бурь происходит как накачка частиц в Р. п. З., так и сброс их в атмосферу Земли. Полярные сияния длятся всё время, пока идут эти процессы, — иногда сутки и более. Р. п. З. могут быть созданы также искусственным образом: при взрыве ядерного устройства на больших высотах; при инжекции искусственно ускоренных частиц, например с помощью ускорителя на борту спутника; при распылении в околоземном пространстве радиоактивных веществ, продукты распада которых будут захвачены магнитным полем. Создание искусственных поясов при взрыве ядерных устройств было осуществлено в 1958 и в 1962 годах. Так, после американского ядерного взрыва (9 июля 1962) во внутренний пояс было инжектировано около 1025 электронов с энергией ~ 1 Мэв, что на два-три порядка превысило интенсивность потока электронов естественного происхождения. Остатки этих электронов наблюдались в поясах в течение почти 10-летнего периода.
Р. п. З. представляют собой серьёзную опасность при длительных полётах в околоземном пространстве. Потоки протонов малых энергий могут вывести из строя солнечные батареи (См. Солнечная батарея) и вызвать помутнение тонких оптических покрытий. Длительное пребывание во внутреннем поясе может привести к лучевому поражению (См. Лучевое поражение) живых организмов внутри космического корабля под воздействием протонов высоких энергий.
Кроме Земли, радиационные пояса существуют у Юпитера и, возможно, у Сатурна и Меркурия. Радиационные пояса Юпитера, исследованные американским космическим аппаратом «Пионер-10», имеют значительно большую протяжённость и большие энергии частиц и плотности потоков частиц, чем Р. п. З. Радиационные пояса Сатурна обнаружены радиоастрономическими методами. Советские и американские космические аппараты показали, что Венера, Марс и Луна радиационных поясов не имеют. Магнитное поле Меркурия обнаружено американской космической станцией «Маринер-10» при пролёте вблизи планеты. Это делает возможным существование у Меркурия радиационного пояса.
Лит.: Вернов С. Н., Вакулов П. В., Логачев Ю. И., Радиационные пояса Земли, в сборнике: Успехи СССР в исследовании космического пространства, М., 1968, с. 106; Космическая физика, пер. с англ., М., 1966; Тверской Б. А., Динамика радиационных поясов Земли, М., 1968; Редерер Х., Динамика радиации, захваченной геомагнитным полем, пер. с англ., М., 1972; Хесс В., Радиационный пояс и магнитосфера, пер. с англ., М., 1972; Шабанский В. П., Явления в околоземном пространстве, М., 1972; Гальперин Ю. И., Горн Л. С., Хазанов Б. И., Измерение радиации в космосе, М., 1972.
Ю. И. Логачев.

Рис. 1. Движение заряженных частиц, захваченных в геомагнитную ловушку. Частицы движутся по спирали вдоль силовой линии магнитного поля Земли и одновременно дрейфуют по долготе.

Рис. 2. Поверхность, описываемая частицей (электроном) радиационного пояса; основной характеристикой поверхности является параметр L; N и S — магнитные полюсы Земли.

Рис. 3. Структура радиационных поясов Земли (сечение соответствует полуденному меридиану): I — внутренний пояс: II — пояс протонов малых энергий; III — внешний пояс; IV — зона квазизахвата.

Рис. 4. Распределение плотности потоков протонов различных энергий над геомагнитным экватором. Кривые соответствуют потокам протонов с энергией выше указанной: 1 — Еp > 1Мэв; 2 — Еp > 1,6 Мэв; 3 — Еp > 5 Мэв; 4 — Еp > 9 Мэв; 5 — Еp > 30 Мэв.

Рис. 5. Разрез магнитосферы Земли по полуденному меридиану для случая, когда ось земного магнитного диполя перпендикулярна направлению на Солнце. Стрелками указаны области, через которые частицы солнечного ветра проникают в магнитосферу.

Физический энциклопедический словарь:

Внутренние области земной магнитосферы, в к-рых магн. поле Земли удерживает заряж, ч-цы (протоны, эл-ны, альфа-частицы и ядра более тяжёлых хим. элементов), обладающие кинетич. энергией от десятков кэВ до сотен МэВ. Выходу заряж. ч-ц из Р. п. 3. мешает особая конфигурация силовых линий геомагн. поля, создающего для заряж. ч-ц магн. ловушку. Р. п. 3. были открыты в 1958: внутр. пояс группой амер. учёных под руководством Дж. Ван Аллена, внеш. пояс сов. учёными во главе с С. Н. Верновым и А. Е. Чудаковым. Потоки ч-ц Р. п. 3. были зарегистрированы счётчиками Гейгера, установленными на ИСЗ.
Принципиальная возможность существования магн. ловушки в магн. поле Земли была показана расчётами норв. геофизика К. Стёрмера (1913) и швед. физика X. Альфвена (1950), но лишь эксперименты на спутниках показали, что ловушка реально существует и заполнена ч-цами высоких энергий. Захваченные в магн. ловушку Земли ч-цы под действием Лоренца силы совершают сложное движение, к-рое можно представить как колебат. движение по спиральной траектории вдоль силовой линии магн. поля из Сев. полушария в Южное и обратно с одновременным более медленным перемещением (долготным дрейфом) вокруг Земли (рис. 1). Когда ч-ца движется по спирали в сторону увеличения магн. поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости ч-цы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля.
Рис. 1. Движение заряж. ч-ц, захваченных в гоомагн. ловушку (а). Ч-цы движутся по спирали вдоль силовой линии магн. поля Земли (б) и одновременно дрейфуют по долготе.
Наконец, в нек-рой точке (наз. зеркальной) происходит «отражение» ч-цы. Она начинает двигаться в обратном направлении — к сопряжённой зеркальной точке в др. полушарии. Одно колебание вдоль силовой линии из Сев. полушария в Южное протон с энергией =100 МэВ совершает за время =0,3 с. Время нахождения («жизни») такого протона в геомагн. ловушке может достигать 100 лет (=3•109 с), за это время он может совершить до 1010 колебаний. Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии ч-цы совершают полный оборот вокруг Земли за время от неск. минут до суток. Положит. ионы дрейфуют в зап. направлении, электроны — в восточном. Движение ч-цы по спирали вокруг силовой линии магн. поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступат. перемещения этого центра вдоль силовой линии.
При движении заряж. ч-цы в магн. поле Земли её мгновенный центр вращения находится на одной и той же поверхности, получившей назв. магн. оболочки (рис. 2).
Рис. 2. Поверхность, описываемая ч-цей (эл-ном) радиац. пояса; осн. характеристикой поверхности явл. параметр L; N и S — магн. полюсы Земли.
Магн. оболочку характеризуют параметром L, его численное значение в случае дипольного поля (см. ДИПОЛЬ) равно расстоянию, выраженному в радиусах Земли, на к-рое отходит магн. оболочка в экваториальной плоскости диполя от центра диполя. Для реального магн. поля Земли параметр L приближённо сохраняет такой же простой смысл. Энергия ч-ц связана со значением параметра L; на оболочках с меньшими значениями L находятся ч-цы, обладающие большими энергиями. Это объясняется тем, что ч-цы высоких энергий могут быть удержаны лишь сильным магн. полем, т. е. во внутр. областях магнитосферы.
Рис. 3. Структура радиац. поясов Земли (сечение соответствует полуденному меридиану): I —внутр. пояс, II —пояс протонов малых энергий, III — внеш. пояс, IV— зона квазизахвата.
Обычно выделяют внутр. и внеш. Р. п. 3., пояс протонов малых энергий (пояс кольцевого тока) и зону квазизахвата ч-ц (рис. 3) или авроральной радиации (по латинскому названию полярных сияний). Внутр. Р. п. 3. характеризуется наличием протонов высоких энергий (от 20 до 800 МэВ) с максимумом плотности потока протонов с энергией ?р>20 МэВ до 104 протон/(см2•с•ср) на расстоянии L=l,5. Во внутр. поясе присутствуют также эл-ны с энергиями от 20—40 кэВ до 1 МэВ; плотность потока эл-нов с ?р?40 кэВ составляет в максимуме =106—107 эл-н/(см2•с•ср). С внеш. стороны этот пояс ограничен магн. оболочкой с L=2, к-рая пересекается с поверхностью Земли на геомагн. широтах =45°. На ниж. границе внутр. пояса (на высотах 200—300 км) ч-цы, испытывая частые столкновения с атомами и молекулами атм. газов, теряют свою энергию, рассеиваются и «поглощаются» атмосферой.
Внеш. Р. п. 3. заключён между магн. оболочками с L=3 и L=6 с макс. плотностью потока ч-ц на L=4—4,5. Для внеш. пояса характерны эл-ны с энергиями 40—100 кэВ, поток к-рых в максимуме достигает 106—107 эл-н/(см2•с•ср). Среднее время «жизни» частиц внеш. Р. п. 3. составляет 105—107 с. В периоды повышенной солнечной активности во внеш. поясе присутствуют также эл-ны больших энергий (до 1 МэВ и выше).
Пояс протонов малых энергий (=0,03 —10 МэВ) простирается от L=l,5 до L=7—8. Зона квазизахвата, или авроральной радиации, расположена за внеш. поясом, она имеет сложную пространс7в. структуру, обусловленную деформацией магнитосферы солнечным ветром (потоком заряж. ч-ц от Солнца). Осн. ч-цами в зоне квазизахвата явл. эл-ны и протоны с энергиями ?<100 кэВ. Внеш. пояс и пояс протонов малых энергий ближе всего (до высоты 200—300 км) подходит к Земле на широтах 50—60°. На широты выше 60° проецируется Зона квазизахвата, совпадающая с , областью макс. частоты появления полярных сияний.
Энергетич. спектры для всех ч-ц Р. п. 3. описываются ф-циями вида: N(?)=?-g, где N(?)— число ч-ц с данной энергией ?, или N(?)=e-?/?0 c характерными значениями g»1,8 для протонов в интервале энергий ? от 40 до 800 МэВ, ?0=200—500 кэВ для эл-нов внеш. и внутр. поясов и ?0=100 кэВ для протонов малых энергий.
Происхождение захваченных ч-ц с энергией, значительно превышающей среднюю энергию теплового движения атомов и молекул атмосферы, связывают с действием неск. физ. механизмов: распадом нейтронов, созданных космическими лучами в атмосфере Земли (образующиеся при этом протоны пополняют внутр. Р. п. 3.); «накачкой» ч-ц в пояса во время геомагн. возмущений (магн. бурь), к-рая в первую очередь обусловливает существование эл-нов внутр. пояса; ускорением и медленным переносом ч-ц солнечного происхождения из внеш. во внутр. области магнитосферы (так пополняются эл-ны внеш. пояса и пояс протонов малых энергий). Проникновение ч-ц солнечного ветра в Р. п. 3. возможно через особые точки магнитосферы (т. н. дневные полярные каспы; рис. 4), а также через т. н. нейтральный слой в хвосте магнитосферы (с её ночной стороны). В области дневных каспов и в нейтральном слое хвоста геомагн. поле резко ослаблено и не явл. существенным препятствием для заряж. ч-ц межпланетной плазмы. Частично Р. п. 3. появляются также за счёт захвата протонов и эл-нов солнечных косм. лучей, проникающих во внутр. области магнитосферы.
Рис. 4. Строение магнитосферы Земли в плоскости, проходящей через магн. полюсы Земли и линию Земля — Солнце. Стрелками указаны области, через к-рые ч-цы солнечного ветра проникают в магнитосферу.
Перечисленных источников ч-ц, по-видимому, достаточно для создания Р. п. 3. с характерным распределением потоков ч-ц. В Р. п. 3. существует динамич. равновесие между процессами пополнения поясов и процессами потерь ч-ц. В основном ч-цы покидают Р. п. 3. из-за потери своей энергии на ионизацию (эта причина ограничивает, напр., пребывание протонов внутр. пояса в магн. ловушке временем =109 с), из-за рассеяния ч-ц при столкновениях с ч-цами окружающей холодной плазмы и рассеяния на магн. неоднородностях и плазменных волнах разл. происхождения (см. ПЛАЗМА). Рассеяние может сократить время «жизни» эл-нов внеш. пояса до 104—105 с. Эти эффекты приводят к нарушению условий стационарного движения ч-ц в геомагн. поле (т. н. адиабатич. инвариантов) и к «высыпанию» ч-ц из Р. п. 3. в атмосферу вдоль силовых линий магн. поля. Высыпание ч-ц из магн. ловушки, в особенности из зоны квазизахвата (авроральной радиации), приводит к усилению ионизации ионосферы, а интенсивное высыпание — к полярным сияниям.
Р. п. 3. представляют собой серьёзную опасность при длит. полётах в околоземном пр-ве. Потоки протонов малых энергий могут вывести из строя солнечные батареи и вызвать помутнение тонких оптич. покрытий. Длит. пребывание во внутр. поясе может привести к лучевому поражению живых организмов внутри косм. корабля под воздействием протонов высоких энергий. Кроме Земли, радиац. пояса существуют у Меркурия, Юпитера и Сатурна. Радиац. пояса Юпитера и Сатурна имеют значительно большую протяжённость и большие энергии ч-ц и плотности потоков ч-ц, чем Р. п. 3.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru