Определение слова «кристаллохимия»

Большой энциклопедический словарь:

КРИСТАЛЛОХИМИЯ — изучает зависимость структуры и свойств кристаллов от их химического состава.

Большая советская энциклопедия:

Кристаллохимия
Изучает пространственное расположение и химическую связь атомов в кристаллах (См. Кристаллы), а также зависимость физических и химических свойств кристаллических веществ от их строения. Будучи разделом химии, К. тесно связана с кристаллографией (См. Кристаллография). Источником экспериментальных данных о кристаллических структурах являются главным образом Рентгеноструктурный анализ, структурная Электронография и Нейтронография, с помощью которых определяют абсолютные величины межатомных расстояний и углы между линиями химических связей (валентные углы). К. располагает обширным материалом о кристаллических структурах нескольких тысяч химических веществ, включая такие сложные объекты, как Белки и вирусы.
Основные задачи К.: систематика кристаллических структур и описание наблюдающихся в них типов химической связи; интерпретация кристаллических структур (выяснение причин, определяющих строение того или иного кристаллического вещества) и их предсказание; изучение связи физических и химических свойств кристаллов с их структурой и характером химической связи.
Строение кристаллов обнаруживает исключительное разнообразие; будучи, например, довольно простым в случае Алмаза, оно оказывается весьма причудливым и сложным в случае кристаллического бора. Как правило, каждому кристаллическому веществу присуща своя структура. Однако достаточно часто (например, NaCI и KCI, Вг2 и CI2) разные вещества имеют структуру, одинаковую с точностью до подобия (изоструктурные вещества). Такие вещества нередко образуют смешанные кристаллы (см. Изоморфизм). С др. стороны, одно и то же химическое вещество, будучи полученным при разных условиях, может иметь разное строение (Полиморфизм).
Кристаллические структуры в К. делят на гомодесмические (координационные) и гетеродесмические. В первых все атомы объединены одинаковыми химическими связями, образующими пространственный каркас. Здесь нет группировок, которые можно было бы назвать молекулами. Гомодесмическую структуру имеют, например, алмаз, галогениды щелочных металлов. Однако гораздо чаще кристаллические вещества имеют гетеродесмическую структуру; её характерная черта — присутствие структурных фрагментов, внутри которых атомы соединены наиболее прочными (обычно ковалентными) связями. Эти фрагменты могут представлять собой конечные группировки атомов, цепи, слои, каркасы. Соответственно выделяются островные, цепочечные, слоистые и каркасные структуры. Островными структурами обладают почти все органические соединения и такие неорганические вещества, как галогены, O2, N2, CO2, N2O4 и др. Роль «островов» играют молекулы, поэтому такие кристаллы называются молекулярными. Часто в качестве «островов» выступают многоатомные ионы (например, сульфаты, нитраты, карбонаты). Цепочечное строение имеют, например, кристаллы одной из модификаций Se (атомы связаны в бесконечные спирали) или кристаллы PdCl2, в которых присутствуют бесконечные ленты:

Слоистую структуру имеют графит, BN, MoS2 и др., каркасную структуру — CaTiO3 (атомы Ti и О, объединённые ковалентными связями, образуют ажурный каркас, в пустотах которого расположены атомы Ca). Известны гетеродесмические структуры, где имеются структурные фрагменты разного типа. Так, кристаллы комплексного соединения (См. Комплексные соединения) [N (CH3)4] [MnCI3] построены из «островов» — ионов [N (CH3)4] + и цепей

По характеру связи между атомами (в случае гомодесмических структур) или между структурными фрагментами (в случае гетеродесмических структур) различают: ковалентные (например, SiC, алмаз), ионные (см. Ионные кристаллы), металлические (металлы и интерметаллические соединения) и молекулярные кристаллы. Кристаллы последней группы, в которой структурные фрагменты связаны межмолекулярным взаимодействием, имеют наибольшее число представителей. Сюда, в частности, входят кристаллы инертных газов. Деление кристаллов на указанные группы в значительной мере условно, поскольку существуют постепенные переходы от одной группы к другой. Однако типичные представители разных групп существенно различаются по свойствам, в частности, по величине энергии структуры (работы, необходимой для разъединения одного моля кристаллического вещества, взятого при атмосферном давлении и комнатной температуре, на отдельные атомы, ионы или молекулы).
Уменьшение Н соответствует уменьшению прочности связи. Резкое различие величины Н для Fe и Na объясняется тем, что в первом случае существенный вклад даёт ковалентное взаимодействие.
Значения энергии структуры Н для некоторых кристаллов
с различными типами химической связи
----------------------------------------------------------------------------
| Тип кристалла       | Вещество     | Н, ккал/моль  |
|                              |                     | *                   |
|---------------------------------------------------------------------------|
| Ковалентный         | SiC               | 283               |
|---------------------------------------------------------------------------|
| Ионный                 | NaCi             | 180               |
|---------------------------------------------------------------------------|
| Металлический      | Fe                | 94                 |
|                              | Na                |                      |
|---------------------------------------------------------------------------|
| Молекулярный       | CHi               | 26 2,4            |
----------------------------------------------------------------------------
* 1 ккал/моль = 4,19 кдж/моль.
Кристаллохимический анализ строения вещества имеет два аспекта: стереохимический и кристаллоструктурный. В рамках первого обсуждаются величины кратчайших межатомных расстояний и значения валентных углов. При этом пользуются понятиями координационного числа (См. Координационное число) (число ближайших соседей данного атома) и координационного многогранника. Для атомов многих элементов, склонных к ковалентному характеру связи, типичны определённые координационные числа и координационные многогранники, что обусловлено направленностью ковалентных связей. Так, атом Be, за редким исключением, имеет координационное число 4 (тетраэдр); для атома Cd характерно наличие шести ближайших соседей, расположенных по октаэдру; для двухвалентного Pd — четырёх, занимающих вершины квадрата (например, в структуре PdCl2). Для объяснения подобных закономерностей обычно используются методы квантовой механики (см. Квантовая химия). Кристаллоструктурный аспект включает в себя исследование относительного расположения фрагментов структуры (и одноатомных ионов) в пространстве кристаллического вещества. В случае молекулярных кристаллов исследуется укладка молекул. Причины образования той или иной кристаллической структуры определяются общим принципом термодинамики: наиболее устойчива структура, которая при данном давлении и данной температуре имеет минимальную свободную энергию. Приближённые расчёты свободной энергии и предсказание наиболее выгодной структуры возможны пока лишь для сравнительно простых случаев, причём точность расчёта значительно ниже точности эксперимента.
В области исследований зависимости свойств кристаллов от их строения К. перекрывается с кристаллофизикой (См. Кристаллофизика) и физикой твёрдого тела (См. Твёрдое тело).
Лит.: Белов Н. В., Структура ионных кристаллов и металлических фаз, [М.], 1947; Бокий Г. Б., Кристаллохимия, 3 изд., М., 1971; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Киттель Ч., Введение в физику твердого тела, пер. с англ., 2 изд., М., 1962; Ормонт Б. Ф., Введение в физическую химию и кристаллохимию полупроводников, М., 1968; Кребс Г., Основы кристаллохимии неорганических соединений, пер. с нем., М., 1971.
П. М. Зоркий.

Орфографический словарь Лопатина:

орф.
кристаллохимия, -и

Физический энциклопедический словарь:

Раздел кристаллографии, в к-ром изучаются закономерности расположения атомов в кристаллах и природа хим. связи между ними. К. основана на обобщении результатов экспериментальных рентгенографич. и др. дифракц. методов исследований ат. структуры кристаллов (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, ЭЛЕКТРОНОГРАФИЯ, НЕЙТРОНОГРАФИЯ), на классич. и квант. теориях хим. связи, на расчётах энергии крист. структур с учётом симметрии кристаллов. Кристаллохим. закономерности позволяют объяснить и в ряде случаев предсказать, исходя из хим. состава в-ва, расположение атомов или молекул в кристаллической решётке и расстояния между ними. Хим. связь между атомами в кристаллах возникает за счёт вз-ствия внеш. валентных электронов атомов. Равновесное расстояние между атомами обычно составляет 1,5—4 ? (в зависимости от типа хим. связи). При сближении атомов на расстояния, меньшие, чем равновесное, возникает резкое их отталкивание. Это позволяет в первом приближении приписать атомам для того или иного типа связи определ. «размеры», т. е. нек-рые пост. радиусы, и тем самым перейти от физ. модели кристалла как атомно-электронной системы к его геом. модели как системе несжимающихся шариков. Полное кристаллохим. описание ат. структуры того или иного кристалла включает указание размеров элем. ячейки, пространств. группы симметрии кристалла, координат атомов, расстоянии между ними, типа хим. связи; описания окружения атомов, характерных ат. группировок, тепловых колебаний атомов и т. п. По хар-ру хим. связи кристаллы делят на четыре осн. группы — ионные кристаллы (напр., NaCl), ковалентные (напр., алмаз, кремний), металлические (металлы и интерметаллич. соединения) и молекулярные кристаллы (напр., нафталин).
Осн. типы хим. связи в кристаллах: а — ионная связь; б — ковалентная связь; в — металлич. связь; г — связь за счёт сил Ван-дер-Ваальса.
В ионных кристаллах эл-ны переходят от атомов металлов, к-рые становятся положит. ионами (катионами), к атомам неметаллов, к-рые становятся отрицат. ионами (анионами), что приводит к электростатич. притяжению между ними (рис., а). В случае ковалентной связи валентные эл-ны соседних атомов обобществляются, образуя «мостики» электронной плотности между связанными атомами (рис., б). В металлич. кристаллах валентные эл-ны образуют общий электронный «газ», осуществляющий коллективное вз-ствие атомов кристалла (рис., в). Расстояния между атомами для этих трёх типов связи составляют 1,5—2,5 ?. В мол. кристаллах атомы внутри молекул объединены прочными ковалентными связями, а атомы соседних молекул взаимодействуют за счёт более слабых ван-дер-ваальсовых сил, (рис., г), имеющих диполь-дипольное и дисперсионное происхождение (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ). Расстояние между атомами соседних молекул 3,5—4 ?. Во многих кристаллах связь имеет промежуточный хар-р, напр. в кристаллах полупроводников (Ge, GaAs) связь в осн. ковалентная, но с примесью ионной и металлической. В нек-рых кристаллах (напр., лёд, органич. кристаллы) существует т. н. водородная связь (см. МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ).
Каждому крист. в-ву присуща определ. структура, но при изменении тсрмодинамич. условий она иногда может меняться (полиморфизм). Обычно чем проще ф-ла соединения, тем более симметрична его структура. Кристаллы с одинаковой хим. ф-лой (в смысле числа и соотношения разл. атомов) могут иметь одинаковую крист. структуру (говорят, что они образуют данный «структурный тип») несмотря на различие типов связи (и з о с т р у к т у р н о с т ь): изоструктурны галогениды щелочных металлов типа NaCl и нек-рые окислы (напр., MgO), ряд сплавов (напр., Ti— Ni). Есть большие серии изоструктурных соединений с ф-лой вида АВ2, АВ3, АВХ3 и т. п. Изоструктурны кристаллы мн. элементов, напр. g-Fe и Cu, образующие гранецентрированную кубич. решётку, но такую же структуру имеют и отвердевшие инертные газы. Если кристаллы изоструктурны и обладают одинаковым типом связи, то их называют изоморфными (см. ИЗОМОРФИЗМ). Во многих случаях между изоморфными кристаллами возможно образование непрерывного ряда твёрдых растворов.
В геом. модели кристалла К. использует концепцию эфф. радиусов атомов, ионов и молекул (к р и с т а л л о х и м и ч е с к и е р а д и у сы). На основе эксперим. данных о расстояниях между атомами в кристаллах построены таблицы кристаллохим. радиусов для всех типов связей, так что межат. расстояние равно сумме радиусов (св-во аддитивности кристаллохим. радиусов). Молекулы в органич. кристаллах предстают как бы окаймлённые «шубой» ван-дер-ваальсовых радиусов.
Осн. геом. представлением в К. явл. теория плотной упаковки, к-рая наглядно объясняет расположение атомов в ряде металлич. и ионных структур. В последнем случае используется представление о заселении «пустот» в упаковке анионов катионами, имеющими меньший ионный радиус.
В мол. кристаллах структурной ед. плотной упаковки явл. молекула. К. органич. соединений рассматривает правила плотной упаковки молекул, связь симметрии молекул и симметрии кристалла, типы органич. структур. Особые кристаллохнм. закономерности выявляются в структуре полимеров, жидких кристаллов, биологических кристаллов.
Координац. число К и вид координац. многогранника характеризуют хим. связь данного атома и структуры кристалла в целом. Напр., Be (за редкими исключениями) и Ge имеют тетраэдрич. окружение (K=4), у Аl и Cr координац. многогранникоктаэдр, у Pd и Pt — квадрат (K=4). Малые координац. числа указывают на значит. роль направленной ковалентной связи, большие — на большую роль ионной или металлич. связей.
Во многих крист. структурах (графит, MoS2 и др.) сосуществуют связи разл. типов. Такие структуры наз. гетеродесмическими, в отличие от гомодесмических — с однотипной связью (алмаз, металлы, NaCl, кристаллы инертных элементов). Для гетеродесмич. структур характерно наличие фрагментов, внутри к-рых атомы соединены более прочными (обычно ковалентнымп) связями. .Эти фрагменты могут представлять собой отд. «острова», цепи, слои, каркасы. Островные структуры типичны для мол. кристаллов. Часто в кач-ве «островов» выступают отд. молекулы и многоат. ионы (напр., SO-4, NO-3, СО-3) или ат. группировки типа РtСl6 в комплексных соединениях. Ряд кристаллов имеет цепочечное строение, типичный примеркристаллы полимеров. Слоистую структуру имеют BN, MoS2, многие силикаты. Для нек-рых классов соединений характерно наличие устойчивых структурных группировок, сочетающихся в них по-разному. Так, в силикатах осн. структурный элемент — тетраэдрич. группировка SiO4 может выступать либо изолированной, либо образовывать пары, кольца, цепочки, слои и т. п.
Образование той или иной крист. структуры определяется общим принципом термодинамики: наиболее устойчива структура, к-рая при данном давлении и данной темп-ре Т имеет минимальную свободную энергию W= U-ST, где U — энергия связи кристалла (энергия, необходимая для разъединения кристалла на отд. атомы или молекулы) при T=0 К, S — энтропия.
Свободная энергия тем выше, чем сильнее связь в кристаллах. Она составляет 100—20 ккал/моль для кристаллов с ковалентной связью, несколько меньше у ионных и металлич. кристаллов и наиболее низка для мол. кристаллов с ван-дер-ваальсовыми связями (1—10 ккал/моль). Теоретич. определение свободной энергии и предсказание структуры пока возможны лишь для сравнительно простых случаев. Они проводятся в рамках зонной квантовой теории тв. тела. В ряде случаев достаточно точные результаты даёт использование полуэмпирич. выражений для потенц. энергии вз-ствия атомов в кристаллах с тем или иным типом связи.

Грамматический словарь Зализняка:

Кристаллохимия, кристаллохимии, кристаллохимии, кристаллохимий, кристаллохимии, кристаллохимиям, кристаллохимию, кристаллохимии, кристаллохимией, кристаллохимиею, кристаллохимиями, кристаллохимии, кристаллохимиях

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru