Определение слова «Групповая Скорость»

Большой энциклопедический словарь:

ГРУППОВАЯ СКОРОСТЬвеличина, приближенно характеризующая распространение негармонической волны (она является суперпозицией группы гармонических волн). Если форма волны изменяется в результате дисперсии волн в среде не очень быстро, то можно рассматривать распространение негармонической волны как целого с групповой скоростью, отличной от фазовых скоростей ее гармонических составляющих. Групповая скорость характеризует скорость переноса энергии волной.

Большая советская энциклопедия:

Групповая скорость
Волн, скорость движения группы или цуга (вереницы) волн, которая при отсутствии поглощения в среде совпадает со скоростью перемещения энергии этой группы волн. Пример группы волн — сигнал, изображенный на рис. 1. Группа волн не является периодической волной (т. е. в точности повторяющейся через определенные промежутки времени), а состоит из набора гармонических волн, частоты которых лежат в некотором интервале, тем более узком, чем более плавную форму имеет огибающая группы волн.
Если среда не обладает дисперсией (См. Дисперсия), то все гармонические волны, входящие в группу, распространяются с одной и той же фазовой скоростью. С той же скоростью распространяется и огибающая группы; в этом случае Г. с. совпадает с фазовой.
При наличии дисперсии гармонической волны различных частот, образующие группу, распространяются с разными фазовыми скоростями. Вследствие этого при распространении изменяются соотношения между фазами разных гармонических волн и происходит искажение формы огибающей. Однако если фазовые скорости группы волн отличаются друг от друга мало (сигнал с узким спектром), то форма огибающей сохраняется при распространении и влияние дисперсии сказывается лишь на том, что скорость движения огибающей группы, т.е. Г. с., отличается от фазовой скорости.
На рис. 2 представлены три последовательных мгновенных снимка сигнала с узким спектром, распространяющегося в среде с дисперсией. Наклон пунктирных прямых, соединяющих точки одинаковой фазы (максимумы), характеризует фазовую скорость; наклон прямых, соединяющих соответствующие точки огибающей (начала и концы сигнала), характеризует Г. с. сигнала. Если при распространении сигнала максимумы и минимумы движутся быстрее, чем огибающая, то это означает, что фазовая скорость данной группы волн превышает её Г. с. (рис. 2, а).
При распространении сигнала в его хвостовой части возникают всё новые максимумы, которые постепенно перемещаются вперёд вдоль сигнала, достигают его головной части и там исчезают. Такое положение имеет место в случае т. н. нормальной дисперсии, т.е. в средах, где фазовая скорость увеличивается с ростом частоты гармонической волны. Примеры сред с нормальной дисперсией: вещества, прозрачные для оптических волн, Волноводы и др. Однако в ряде случаев наблюдается аномальная дисперсия среды; в этих случаях Г. с. сигнала превышает его фазовую скорость (рис. 2, б). Максимумы и минимумы появляются в передней части группы, перемещаются назад и исчезают в хвосте сигнала. Аномальная дисперсия характерна для волн на поверхности воды, света в поглощающих средах.
Понятие Г. с. играет большую роль в ряде областей физики, т. к. всякая реальная гармоническая волна, как электромагнитная, так и упругая, в действительности представляет собой группу волн с близкими частотами. Поэтому все методы измерения скорости света в веществе, связанные с учётом запаздывания света, дают именно Г. с. В широко применяемом для исследования ионосферы (См. Ионосфера) методе зондирования радиоимпульсами времена запаздывания отражённых от ионосферы сигналов также определяются Г. с. радиоволн. В квантовой механике (См. Квантовая механика) Г. с. волн (см. Волновой пакет) оказывается равной скорости материальной частицы, с которой связаны эти волны.
Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т.3); Блохинцев Д. И., Основы квантовой механики, 4 изд., М., 1963.

Рис. 1. Группа волн.

Рис. 2. Последовательные моментальные снимки группы волн в моменты времени t1, t2, t3, а — в случае нормальной дисперсии, б — в случае аномальной дисперсии.

Математическая энциклопедия:

Величина, характеризующая скорость распространения волнового процесса в диспергирующих средах. Пусть волновой процесс описывается волновым уравнением с переменным коэффициентом Ищутся решения, удовлетворяющие условиям и имеющие вид Функция должна быть ненулевым решением одномерной краевой задачи Если в нек-ром промежутке изменения существует конечный набор при к-рых эта задача имеет ненулевое решение , то величины и наз. соответственно фазовой и групповой скоростями волны Фазовая скорость и Г. с. связаны следующим соотношением (формула Рэлея): где — длина волны. Лит.: [1) Мандельштам Л. И., Полное собрание трудов, т. 5, Л., 1950, с. 315 — 19, 419-25, 439-67; [2] Горелик Г. С., Колебания и волны, 2 изд., М., 1959. В. М. Бабич.

Физический энциклопедический словарь:

Скорость движения группы или цуга волн, образующих в каждый данный момент времени локализованный в пр-ве волновой пакет (рис. 1). В линейных средах, где соблюдается суперпозиции принцип, его можно рассматривать как набор гармонич. волн с частотами в интервале w0-Dwсм. ДИСПЕРСИЯ ВОЛН). .
Рис. 1. Волновой пакет.
Если среда не обладает дисперсией, то все гармонич. волны распространяются с одной и той же фазовой скоростью и пакет ведёт себя как строго стационарная волна — его Г. с. совпадает с фазовой скоростью. При наличии дисперсии волны разл. частот распространяются с разными фазовыми скоростями и форма огибающей искажается. Однако для сигналов с достаточно узким спектром, когда фазовые скорости гармонич. волн, образующих волн. пакет, мало отличаются друг от друга, и на не слишком больших расстояниях, когда форма огибающей приближённо сохраняется, влияние дисперсии сказывается лишь на скорости перемещения огибающей, к-рая и есть Г. с. Поскольку распространение двух синусоидальных волн с близкими частотами w0+Dw пакета описывается выражениями
sin((w0±Dw)t-(k0±Dk)x),
то скорость их огибающей равна Dw/Dk, что в пределе приводит к ф-ле:
vгр=д(w/дk¦k0. .
Рис. 2. Последовательные моментальные снимки группы волн в моменты времени t1, t2, t3: a — в случае нормальной дисперсии; б — в случае аномальной дисперсии.
На рис. 2 представлены три последовательных мгновенных снимка сигнала с узким спектром, распространяющегося в среде с дисперсией. Наклон пунктирных прямых, соединяющих точки одинаковой фазы, характеризует фазовую скорость; наклон прямых, соединяющих соответствующие точки огибающей (начала и концы сигнала), характеризует Г. с. сигнала. Если при распространении сигнала максимумы и минимумы движутся быстрее, чем огибающая, то это означает, что фазовая скорость данной группы волн превышает её Г. с. (рис. 2, а). При распространении сигнала в его «хвостовой» части возникают всё новые максимумы, к-рые постепенно перемещаются вперёд вдоль сигнала, достигают его «головной» части и там исчезают. Такое положение имеет место в случае т. н. норм. дисперсии, т. е. в средах, где показатель преломления n увеличивается с ростом частоты гармонической волны (dn/dw>0). Такую дисперсию наз. также отрицательной, поскольку с ростом k фазовая скоростьволны убывает. Примеры сред с норм. дисперсией — в-ва, прозрачные для оптич. волн, волноводы, изотропная плазма и др. Однако в ряде случаев наблюдается аномальная (положительная) дисперсия среды (dn/dw<0); в этих случаях Г. с. сигнала превышает vф(дw/дk>w/k). Максимумы и минимумы появляются в передней части группы (рис. 2, 6), перемещаются назад и исчезают в «хвосте» сигнала. Аномальная дисперсия характерна для капиллярных волн на поверхности воды vгр=2vф), для эл.-магн. и акустич. волн в средах с резонансным поглощением, а также (при определ. условиях) для волн в периодич. структурах (кристаллы, замедляющие структуры и т. п.). При этом возможна даже ситуация, при к-рой Г. с. направлена противоположно фазовой. Понятие Г. с. играет важную роль и в физике и в технике, поскольку все методы измерения скоростей распространения волн, связанные с запаздыванием сигналов (в т. ч. скорости света), дают Г. с. Именно она фигурирует при измерении дальности в гидро- и радиолокации, при зондировании ионосферы, в системах управления косм. объектами и т. д. Согласно относительности теории, всегда vгр?c, где c — скорость света в вакууме; для фазовых скоростей ограничений не существует.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru