Определение слова «Привалова Теорема»

Математическая энциклопедия:

1) П. т. о сопряженных функциях: пусть — периодическая непрерывная функция с периодом 2p и — тригонометрически сопряженная функция с f(t); тогда если f(t).удовлетворяет условию Липшица о показателем при 0<a<1 и имеет модуль непрерывности, не больший Мd In (1/d) при a=1. Эта теорема, доказанная И. И. Приваловым [1], имеет важные применения в теории тригонометрич. рядов. Она переносится и на условия Липшица в нек-рых других метриках (см., напр., [5]). 2) П. т. единственности аналитических функций: если однозначная аналитич. ция f(z) в области Dплоскости комплексного переменного z, ограниченной спрямляемой жордановой кривой Г, на нек-ром множестве положительной меры Лебега на Г имеет нулевые угловые граничные значения, то в D. Эта теорема доказана И. И. Приваловым [2); ее обобщением является Лузина — ;см. также Единственности свойство аналитических функций. 3) П. т. о сингулярном интеграле Кош и, основная лемма Привалова,- один из основных результатов теории интеграла типа Ноши — Стилтьеса (см. Коши интеграл). Пусть Г : z== z(s), ,-спрямляемая (замкнутая) жорданова кривая на плоскости комплексного переменного z, l — длина кривой Г, s — длина дуги на Г, отсчитываемая от нек-рой фиксированной точки; j=j(s) — угол между положительным направлением оси абсцисс и касательной к Г, y(s) — комплексная функция ограниченной вариации на Г. Пусть точка определяется значением s0 длины дуги, и Г d — часть линии Г, оставшаяся после удаления из Г меньшей дуги, концами к-рой являются точки z(s0-d) и z(s0+d). Конечный предел при (1) если он существует, наз. сингулярным интегралом Коши — Стилтьеса. Пусть D+ и D- — соответственно конечная и бесконечная области, ограничиваемые кривой Г. Формулировка П. т.: если для почти всех по мере Лебега на Г точек Г существует сингулярный интеграл (1), то почти всюду на Г существуют угловые граничные значения F+(z). интеграла типа Коши — Стилтьеса (2) соответственно из областей D+, причем почти всюду справедливы Сохоцкого формулы: (3) Обратно, если почти всюду на Г существуют угловые граничные значения F+(z0).(или F-(z0)).интеграла (2), то почти всюду на Г существуют сингулярный интеграл (1) и граничные значения с другой стороны F-(z0) (соответственно F+(z0)), причем выполняются равенства (3). Эта теорема была установлена И. И. Приваловым для интегралов типа Коши — Лебега (т. е. для случая абсолютно непрерывной функции y(s), см. [2]), а затем и для общего случая [3]. Она играет основную роль в теории сингулярных интегральных уравнений и разрывных граничных задач аналитич. ций (см. [6]). 4) П. т. о граничных значениях интеграла типа Коши — Лебега: если жорданова кривая Г кусочно гладкая и без точек заострения, а комплексная функция , удовлетворяет условию Липшица то интеграл типа Коши — Лебега есть непрерывная функция в замкнутой области , причем для граничных значений F+(z) выполняются условия: если 0<a<1, и если (см. [2]). Лит.:[1] Привалов И. И., "Bull. Soc. math. France", 1916, t. 44, p. 100-03; [2] его же, Интеграл Cauchy, Саратов, 1918; [3] его же, Граничные свойства однозначных аналитических функций, М., 1941; [4] его же, Граничные свойства аналитических функций, 2 изд., М.- Л., 1950; [5] Зигмунд А., Тригонометрические ряды, пер. с англ., М., 1965; [6] Xведелидзе Б. В., в кн.: Итоги науки и техники. Современные проблемы математики, т. 7, М., 1975, с. 5-162. Е. Д. Соломенцев.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru