Определение слова «МАГНИТНЫЕ МАТЕРИАЛЫ»

Большая советская энциклопедия:

Магнитные материалы
Вещества, существенно изменяющие значение магнитного поля, в которое они помещены. Ещё в древности был известен природный намагниченный минерал магнетит, из которого в Китае изготовляли стрелки магнитного компаса уже более 2 тысяч лет назад. Магнетитслабый магнетик; значительно более сильным магнетиком оказалось железо. Практическое применение железа как М. м. началось в 19 веке после открытия Х. К. Эрстедом, М. Фарадеем (См. Фарадей), Э. Х. Ленцем законов электромагнетизма, изобретения Б. С. Якоби машин постоянного тока, П. Н. Яблочковым — трансформатора и генератора переменного тока, М. О. Доливо-Добровольским (См. Доливо-Добровольский) — трёхфазного тока. С 1900 в электротехнике начали применять железо-кремнистые стали, несколько позднеелегко намагничивающиеся в слабых полях Fe — Ni сплавы, получившие широкое распространение в технике связи. Значительно ускорило процесс разработки новых М. м. развитие теории ферромагнетизма. В середине 20 века появились оксидные М. м. — Ферриты, слабо проводящие электрический ток, их стали использовать в технике высоких и сверхвысоких частот.
Количество применяемых в технике М. м. очень велико. Если рассматривать М. м. с точки зрения лёгкости намагничивания (См. Намагничивание) и перемагничивания, то их можно подразделить на Магнитно-твёрдые материалы и Магнитно-мягкие материалы.
Хотя к магнитно-мягким и магнитно-твёрдым материалам относится подавляющее большинство М. м., в отдельные группы выделяют Термомагнитные сплавы, Магнитострикционные материалы, Магнитодиэлектрики и другие специальные материалы.
Качество М. м. непрерывно повышается путём применения всё более чистых исходных (шихтовых) материалов и совершенствования технологии производства (термические обработки материалов в защитных средах, вакуумной плавки и др.). Улучшение кристаллической и магнитной текстуры М. м. позволит уменьшить потери энергии в них на перемагничивание, что особенно важно для электротехнических сталей. Формирование специального вида кривых намагничивания и петель гистерезиса возможно при воздействии на М. м. магнитных полей, радиоактивного излучения, нагрева и др. При создании М. м. (например, магнитно-мягких материалов с большой индукцией насыщения и с малой шириной магнитного резонанса (См. Магнитный резонанс)) перспективны редкоземельные элементы. Разрабатываются М. м., в которых магнитные свойства сочетаются с целым рядом других свойств (электрическими, оптическими, тепловыми).
Физические свойства основных М. м. приведены в таблицах к статьям Магнитно-мягкие материалы и Магнитно-твёрдые материалы.
Лит.: Бозорт Р. М., Ферромагнетизм, перевод с английского, М., 1956; Займовский А. С. и Чудновская Л. А., Магнитные материалы, 3 изд., М. — Л., 1957; Дружинин В. В., Магнитные свойства электротехнической стали, М. — Л., 1962; Смит Я., Вейн Х., Ферриты, физические свойства и практические применения, перевод с английского, М., 1962; Вольфарт Э., Магнитно-твердые материалы, перевод с английского, М. — Л., 1963; Редкоземельные ферромагнетики и антиферромагнетики, М., 1965; Лаке Б., Баттон К., Сверхвысокочастотные ферриты и ферримагнетики, перевод с английского, М., 1965; Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты. Строение, свойства, технология производства, Л., 1968; Вонсовский С. В., Магнетизм, М., 1971; Pfeifer F., Zum Verstandnis der magnetischen Eigenschaften technischen Permalloylegierungen, «Zeitschaft fr Metallkunde», 1966, Bd 57, H 4; Tebble R. S., Craik D. J., Magnetic materials, L. — N. Y. — Toronto, 1969; Chin G. Y., Review of Magnetic Properties of Fe — Ni Alloys, «IEEE Transaction on Magnetics», 1971, v. 7, № 1, p. 102.
И. М. Пузей.

Физический энциклопедический словарь:

Вещества, магн. св-ва к-рых обусловливают их широкое применение в электротехнике, автоматике, телемеханике, приборостроении (пост. магниты, электромагниты, статоры и роторы электрич. генераторов, датчики, магн. запоминающие устройства и т. д.). Широкое применение М. м. в электротехнике (сначала железа) началось в 19 в. С 1900 в электротехнике применяются железокремнистые стали, несколько позднее стали применять легко намагничивающиеся в слабых полях сплавы Fe — Ni. Разработке новых М. м. способствовало развитие теории ферромагнетизма. В сер. 20 в. появились оксидные М. м.— ферриты, используемые в технике высоких и сверхвысоких частот; в 1976 — аморфные М. м. метгласы (металлические стёкла) на основе Fe, Co, Ni с добавками аморфизаторов В, Р, С, Si, Ge, редкозем. элементов (РЗЭ). Наиболее высокая индукция насыщения (Bs= 18000 Гс) получена в Fe в сочетании с В и С, наибольшая коэрцитивная сила (Hс=30000 Э) — в Fe2Dy. Аморфные М. м. стабильны до 300°С.
По лёгкости намагничивания и перемагничивания М. м. подразделяют на магнитно-твёрдые материалы и магнитно-мягкие материалы. В отд. группы выделяют термомагнитные сплавы, магнитострикиионные материалы, магнитодиэлектрики и др. спец. материалы. Создание более совершенных М. м. связано с применением всё более чистых исходных (шихтовых) материалов и с разработкой новой технологии производства (вакуумной плавки и др.). Улучшение крист. и магнитной текстуры М. м. позволяет уменьшить потери энергии в них на перемагничивание, что особенно важно для электротехн. сталей. Формирование спец. вида кривых намагничивания и петель гистерезиса возможно при воздействии на М. м. магн. полей, радиоактивного излучения, нагрева и др. физ. факторов. Для создания высококачеств. М. м. (напр., магнитно-мягких материалов с большой индукцией насыщения и с малой шириной магнитного резонанса) перспективны РЗЭ. Разрабатываются М. м., в к-рых магн. св-ва сочетаются с необходимыми электрич., оптич. и тепловыми св-вами.
Физ. св-ва осн. М. м. приведены в ст. Магнитно-мягкие материалы и Магнитно-твёрдые материалы.

Техника. Современная энциклопедия:

магнитные материалы
Вещества, обладающие магнитными свойствами и изменяющие магнитное поле, в которое они помещены. Ими могут быть металлы и сплавы (гл. обр. ферромагнетики, такие, как Fe, Co, Ni, Cu, редкоземельные элементы), диэлектрики и полупроводники (ферри – и антиферромагнетики, напр. ферриты-шпинели МFeO, где М – Fe, Ni, Cо, Mn, Мg, Zn, Cu, интерметаллиды и др.). Различают магнитомягкие, магнитотвёрдые, термомагнитные, магнитооптические и магнитострикционные материалы.
Магнитомягкие материалы – ферромагнитные сплавы, которые намагничиваются до насыщения и перемагничиваются в относительно слабых магнитных полях напряжённостью до 4 кА/м; характеризуются высокими значениями относительной магнитной проницаемости (до 106), небольшой коэрцитивной силой. Применяются для изготовления магнитопроводов, трансформаторов, магнитных усилителей, реле, магнитных головок для аудио – и видеозаписи, сердечников катушек индуктивности и т. п. Основные из них: электротехническое железо; сплавы на основе Fe-Ni – пермаллои, супермаллои (с добавкой Мо), изопермы (Cr, Ti, Nb, Cu, Al), муметалл (Mn); сплавы на основе Fe-Со с добавками V (пермендюры), Fe-Со-Ni с добавками Мn и Сг (перминвары); на основе Fe-А1 и Fe-А1-Si (алферы, алсиферы, сендасты); ферриты-шпинели; композиты карбонильного железа или пермаллоя с диэлектрическим связующим (полистирол, жидкое стекло).
Магнитотвёрдые материалы намагничиваются до насыщения и перемагничиваются в магнитных полях 4 кА/м. Применяются как постоянные магниты, в гистерезисных двигателях, узлах радиоаппаратуры и механических удерживающих устройств, в качестве носителей памяти и накопителей информации. Основные из них: углеродистые и легированные Cr, Со и Ni-стали с мартенситной структурой; сплавы на основе Fe-Ni-Al (ални), Сu-Ni-Со (кунико), Fe-Со-V (викаллой) и др.; сплавы благородных металлов (Pt, Ir, Pd) с переходными, применяемые для изготовления сверхминиатюрных магнитов; интерметаллические соединения металлов группы Fe с редкоземельными элементами (напр., NdFeB); материалы для магнитной записи с нанесёнными порошками из оксидов переходных металлов, сплавов Со с Ni, Pt, W, Cr или редкоземельными элементами Cо-Cd-Tb, Fe-Cо-Gd-Tb; композиты на основе порошкообразных ферритов, интерметаллидов и органического связующего (пластмасса, каучуки).
Термомагнитные материалы обладают сильной зависимостью намагниченности от температуры – медноникелевые (кальмаллои) и железоникелевые сплавы (термопермы); их применяют в измерительных приборах для коррекции и компенсации температурных изменений в магнитном поле, в качестве датчиков температуры.
Магнитооптические материалы способны вращать плоскость поляризации света, используются для управления световыми потоками в лазерной технике и оптоэлектронике, напр. халькогенидные ферриты-гранаты (YBi)FeO, прозрачные в ИК-области света.
Магнитострикционные материалы обладают повышенной способностью деформироваться при намагничивании, используются в излучателях и приёмниках звука и ультразвука, преобразующих энергию магнитного поля в механическую и обратно; основные материалыникель, сплавы никеля (пермендюр) и железа (с Аl, Ni, Pt, Ni и Co, Ni и Cr, Co и Сr), интерметаллиды редкоземельных элементов.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru