Определение слова «МАГНИТ СВЕРХПРОВОДЯЩИЙ»

Большая советская энциклопедия:

Магнит сверхпроводящий
Соленоид или Электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости (См. Сверхпроводимость) обладает нулевым омическим сопротивлением. Если такая обмотка замкнута накоротко, то наведённый в ней электрический ток сохраняется практически сколь угодно долго. Магнитное поле незатухающего тока, циркулирующего по обмотке М. с., исключительно стабильно и лишено пульсаций, что важно для ряда приложений в научных исследованиях и технике.
Обмотка М. с. теряет свойство сверхпроводимости при повышении температуры выше критической температуры (См. Критическая температура) Тк сверхпроводника, при достижении в обмотке критического тока (См. Критический ток) Ik или критического магнитного поля (См. Критическое магнитное поле) Нк. Учитывая это, для обмоток М. с. применяют материалы с высокими значениями Тк, Ik и Нк (см. таблицу).
Свойства сверхпроводящих материалов, применяемых для обмоток сверхпроводящих магнитов
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
| Материал                               | HK при     | Критическая      | Критическая плотность тока (а/см2)                               |
|                                               | 4,2 K, кэ  | температура     | в магнитном поле                                                          |
|                                               |                | TK, K                 |--------------------------------------------------------------------------------------|
|                                               |                |                          | 50 кгс          | 100 кгс         | 150 кгс         | 200 кгс         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Сплав ниобий – цирконий        | 90            | 10,5                  | 1·105            | 0                  | 0                  | 0                  |
| (Nb 50% – Zr 50%)                  |                |                          |                    |                    |                    |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Сплав ниобий – титан             | 120          | 9,8                    | 3·105            | 1·104            | 0                  | 0                  |
| (Nb 50% – Ti 50%)                  |                |                          |                    |                    |                    |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Сплав ниобий – олово (Nb3     | 245          | 18,1                  | (1,5–2)·106    | 1·106            | (0,7–1)·105    | (3–5)·104       |
| Sn)                                         |                |                          |                    |                    |                    |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Соединение ванадий –           | 210          | 14,5                  | 1·106            | (2–3)·105      | (1,5–2)·105    | (3–5)·104       |
| галлий (V3Ga)                         |                |                          |                    |                    |                    |                     |
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Для стабилизации тока в обмотке М. с. (предотвращения потери сверхпроводимости отдельными её участками) сверхпроводящие обмоточные материалы выпускаются в виде проводов и шин, состоящих из тонких жил сверхпроводника в матрице нормального металла с высокой электро- и теплопроводностью (медь или алюминий). Жилы делают не толще нескольких десятков мкм, что снижает тепловыделение в обмотке при проникновении в неё растущего с током магнитного поля. Кроме того, весь проводник при изготовлении скручивают вдоль оси (рис. 1а, 1б), что способствует уменьшению токов, наводящихся в сверхпроводящих жилах и замыкающихся через металл матрицы. Обмоточные материалы из хрупких интерметаллических соединений Nb3Sn и V3Ga выпускают в виде лент из Nb или V толщиной 10—20 мкм со слоями интерметаллида (2—3 мкм) на обеих поверхностях. Такая лента для стабилизации сверхпроводящего тока и упрочнения покрывается тонким слоем меди или нержавеющей стали.
Сравнительно небольшие М. с. (с энергией магнитного поля до нескольких сотен кдж) изготавливают с плотно намотанной обмоткой, содержащей 30—50% сверхпроводника в сечении провода. У крупных М. с., с энергией поля в десятки и сотни Мдж, проводники (шины) в своём сечении содержат 5—10% сверхпроводника, а в обмотке предусматриваются каналы, обеспечивающие надёжное охлаждение витков жидким гелием.
Электромагнитное взаимодействие витков соленоида создаёт механические напряжения в обмотке, которые в случае длинного соленоида с полем ~100 кгс эквивалентны внутреннему давлению ~ 400 am (3,9107 н/м2). Обычно для придания М. с. необходимой механической прочности применяют специальные бандажи (рис. 2). В принципе, механические напряжения могут быть значительно снижены такой укладкой витков обмотки, при которой линии тока совпадают с силовыми линиями магнитного поля всей системы в целом (так называемая «бессиловая» конфигурация обмотки).
При создании в обмотке М. с. электрического тока требуемой величины сначала включают нагреватель, расположенный на замыкающем обмотку сверхпроводящем проводе. Нагреватель повышает температуру замыкающего провода выше его Тк, и цепь шунта перестаёт быть сверхпроводящей. Когда ток в соленоиде достигнет требуемой величины, нагреватель выключают. Цепь шунта, охлаждаясь, становится сверхпроводящей, и после снижения тока питания до нуля в обмотке М. с. и замыкающем её проводе начинает циркулировать незатухающий ток.
Работающий М. с. находится обычно внутри криостата (рис. 3) с жидким гелием (температура кипящего гелия 4,2 K ниже Тк сверхпроводящих обмоточных материалов). Для предотвращения возможных повреждений сверхпроводящей цепи и экономии жидкого гелия при выделении запасённой в М. с. энергии в цепи М. с. имеется устройство для вывода энергии на разрядное сопротивление (рис. 4). Предельная напряжённость магнитного поля М. с. определяется в конечном счёте свойствами материалов, применяемых для изготовления обмотки магнита (см. таблицу).
Современные сверхпроводящие материалы позволяют получать поля до 150—200 кгс. Стоимость крупных М. с. с напряжённостью поля порядка десятков кгс в объёме нескольких м3 практически не отличается от затрат на сооружение водоохлаждаемых соленоидов с такими же параметрами, в то время как суммарные затраты электрической энергии на питание М. с. и его охлаждение приблизительно в 500 раз меньше, чем для обычных электромагнитов. Для обеспечения работы такого М. с. требуется около 100—150 квт, тогда как для эксплуатации аналогичного водоохлаждаемого магнита потребовалась бы мощность ~40—60 Мвт.
Значительное число созданных М. с. используется для исследования магнитных, электрических и оптических свойств веществ, в экспериментах по изучению плазмы, атомных ядер и элементарных частиц. М. с. получают распространение в технике связи и радиолокации, в качестве индукторов магнитного поля электромашин. Принципиально новые возможности открывает сверхпроводимость в создании М. с. — индуктивных накопителей энергии с практически неограниченным временем её хранения.
Лит.: Роуз-Инс А., Родерик Е., Введение в физику сверхпроводимости, пер. с. англ., М., 1972; Зенкевич В. Б., Сычев В. В., Магнитные системы на сверхпроводниках, М., 1972; Кремлёв М. Г., Сверхпроводящие магниты, «Успехи физических наук», 1967, т. 93, в. 4.
Б. Н. Самойлов.

Рис. 1б. Поперечное сечение многожильного комбинированного проводника с 61 нитью (слева) и 1045 нитями (справа) в медной матрице.

Рис. 3. Установка Института атомной энергии им. И. В. Курчатова, в которой испытываются секции сверхпроводящих магнитных систем диаметром около 1 м. В средней части фотографии видна закрепленная на крышке криостата испытываемая секция (С), внизу — цилиндрический криостат (К).

Рис. 1а. Схематическое изображение многожильного сверхпроводящего провода: комбинированный скрученный проводник (1 — сверхпроводящие нити, 2 — матрица).

Рис. 2. Основные элементы конструкции сверхпроводящего магнита: 1 — контакт для присоединения к внешним цепям; 2 — многожильный сверхпроводящий провод в изоляционном покрытии, припаянный к контакту; 3 — рабочий объём соленоида, максимальная напряжённость поля создаётся в его центре; 4 — текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 — металлический каркас соленоида; 6 — сверхпроводящая обмотка; 7 — силовой бандаж обмотки; 8 — изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани.

Рис. 4. Схематическое изображение включения сверхпроводящего магнита в цепи питания и защиты (разрядки): 1 — дьюар с жидким азотом; 2 — дьюар с жидким гелием; 3 — соленоид; 4 — нагреватель; 5 — источник питания соленоида; 6 — разрядное сопротивление; 7 — реле защиты; 8 — управляющее устройство.

Физический энциклопедический словарь:

Соленоид или электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости обладает нулевым омич. сопротивлением. Если она замкнута накоротко, то наведённый в ней электрич. ток циркулирует, практически не изменяясь, сколь угодно долго и его магн. поле остаётся стабильным (лишённым пульсаций). Совр. М. с. позволяют получать поля до 150—200 кГс.
Обмотка М. с. теряет сверхпроводимость при повышении темп-ры выше критической температуры Тк сверхпроводника, при достижении в обмотке критич. тока Iк или критического магнитного поля Нк. Учитывая это, для обмоток М. с. применяют материалы с высокими значениями Тк, Iк и Hк (табл.).
Для предотвращения потери сверхпроводимости отд. участками обмотки обмоточные материалы выпускаются в виде проводов и шин, состоящих из тонких жил сверхпроводника в матрице норм. металла с высокой электро- и теплопроводностью (Си или А1). Жилы делают не толще неск. десятков мкм, что снижает тепловыделение в обмотке при проникновении в неё растущего с током магн. поля. Кроме того, весь проводник при изготовлении скручивают вдоль оси, что способствует уменьшению токов, наводящихся в сверхпроводящих жилах и замыкающихся через металл матрицы. Обмоточные материалы из хрупких интерметаллич. соединений Nb3Sn и V3Ga выпускают в виде лент из Nb или V толщиной 10—20 мкм со слоями интерметаллич. соединений (2—3 мкм) на обеих поверхностях. Такая лента для упрочнения покрывается тонким слоем меди или нержавеющей стали.
Сравнительно небольшие М. с. (с энергией магн. поля до неск. сотен кДж) изготовляют с плотно намотанной обмоткой, содержащей 30—50% сверхпроводника в сечении провода. У крупных М. с., с энергией поля в десятки и сотни МДж, проводники (шины) в своём сечении содержат 5— 10% сверхпроводника, а в обмотке предусматриваются каналы, обеспечивающие надёжное охлаждение витков жидким гелием.
СВОЙСТВА СВЕРХПРОВОДЯЩИХ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ ДЛЯ ОБМОТОК СВЕРХПРОВОДЯЩИХ МАГНИТОВ

Рис. 1. Осн. элементы конструкции сверхпроводящего магнита: 1 — контакт для присоединения к внеш. цепям; 2 — многожильный сверхпроводящий провод в изоляц. покрытии, припаянный к контакту; 3 — рабочий объём соленоида, макс. напряжённость поля создаётся в его центре; 4 — текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 — металлич. каркас соленоида; 6 — сверхпроводящая обмотка; 7 —силовой бандаж обмотки; 8 — изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани.
Эл.-магн. вз-ствие витков соленоида создаёт механич. напряжения в обмотке, к-рые в случае длинного соленоида с полем = 100 кГс эквивалентны внутр. давлению = 400 ат (=3,9•107 Н/м2). Обычно для придания М. с. необходимой механич. прочности применяют спец. бандажи (рис. 1).
Рис. 2. Установка Института атомной энергии им. И. В. Курчатова, в к-рой испытываются секции сверхпроводящих магн. систем диаметром ок. 1 м. В ср. части фотографии видна закреплённая на крышке криостата испытываемая секция, внизу — цилиндрич. криостат.
Рис. 3. Схематич. изображение включения сверхпроводящего магнита в цепи питания и защиты (разрядки): 1 — дьюар с жидким азотом; 2 — дьюар с жидким гелием; 3 — соленоид; 4 — нагреватель; 5 — источник питания соленоида; в — разрядное сопротивление; 7 — реле защиты; 8 — управляющее устройство.
Механич. напряжения могут быть значительно снижены такой укладкой витков обмотки, при к-рой линии тока близки по направлению к силовым линиям магн. поля всей системы в целом (т. н. «бессиловая» конфигурация обмотки).
При создании в обмотке М. с. электрич. тока требуемой величины сначала включают нагреватель, расположенный на замыкающем обмотку сверхпроводящем проводе (шунте). Нагреватель повышает темп-ру замыкающего провода выше его Тк, и цепь шунта перестаёт быть сверхпроводящей. Когда ток в соленоиде достигнет требуемой величины, нагреватель выключают. Цепь шунта, охлаждаясь, становится сверхпроводящей, и после снижения тока питания до нуля в обмотке М. с. и замыкающем её проводе начинает циркулировать незатухающий ток.
Работающий М. с. находится обычно внутри криостата (рис. 2) с жидким гелием (темп-pa кипящего гелия 4,2 К ниже Тк сверхпроводящих обмоточных материалов). Для предотвращения возможных повреждений сверхпроводящей цепи и экономии жидкого гелия при выделении запасённой в М. с. энергии в цепи М. с. имеется устройство для вывода энергии на разрядное сопротивление (рис. 3).
М. с. используют для исследования магн. электрич. и оптич. св-в в-в, в экспериментах по изучению плазмы, ат. ядер и элем. ч-ц. М. с. получают распространение в технике связи и радиолокации, в кач-ве индукторов магн. поля электромашин. Принципиально новые возможности открывает сверхпроводимость в создании М. с.— индуктивных накопителей энергии с практически неограниченным временем её хранения.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru