Определение слова «вакуумный насос»

Большой энциклопедический словарь:

ВАКУУМНЫЙ НАСОС — служит для удаления (откачки) газов или паров из замкнутого объема (системы) с целью получения в нем вакуума. Основные типы вакуумных насосов: механические, струйные, сорбционные, криогенные.

Большая советская энциклопедия:

Вакуумный насос
Устройство для удаления (откачки) газов и паров из замкнутого объёма с целью получения в нём Вакуума. Существуют различные типы В. н., действие которых основано на разных физических явлениях: механические (вращательные), струйные, сорбционные, конденсационные.
Основные параметры В. н.: предельное (наименьшее) давление (остаточное давление, предельный вакуум), которое может быть достигнуто насосом; быстрота откачки — объём газа, откачиваемый при данном давлении в единицу времени (м3/сек, л/сек); допустимое (наибольшее) выпускное давление в выпускном сечении насоса, дальнейшее повышение которого нарушает нормальную работу В. н.
Механические насосы применяют для получения вакуума от 1 н/м2 (10-2 мм рт. ст.) до 10-8 н/м2 (10-10 мм рт. ст.). В рабочей камере простейшего механического насоса совершает возвратно-поступательное движение поршень, который вытесняет газ, создавая при обратном ходе разрежение со стороны откачиваемой системы. Поршневые насосы (рис. 1а, 1б) были первыми механическими насосами. Их вытеснили вращательные насосы. В многопластинчатом вращательном насосе (рис. 2а, 2б) всасывание и выталкивание газа осуществляется при изменении объёмов ячеек, образованных эксцентрично расположенным ротором, в прорезях которого помещены подвижные пластины, прижимающиеся к внутренней поверхности камеры и скользящие по ней при его вращении. За счёт большой частоты вращения ротора эти насосы при сравнительно малых размерах обладают большой быстротой откачки (до 125 л/сек). Предельное давление достигает 2000 н/м2 (15 мм рт. ст.) в одноступенчатых насосах и 10 н/м2 (10-1 мм рт. ст.) в двухступенчатых. Аналогично происходит процесс откачки газа водокольцевыми насосами (рис. 3а, 3б). При вращении колеса с радиальными лопастями, эксцентрично расположенного в камере, вода, заполняющая камеру, увлекается лопастями и под действием центробежных сил отбрасывается к стенке корпуса, образуя водяное кольцо 1 и серповидную камеру 2, в которую поступает откачиваемый газ. При вращении колеса ячейки поочерёдно соединяются с каналом, через который откачиваемый газ выходит в атмосферу. Эти насосы пригодны для откачки влажного и загрязнённого газа, кислорода и взрывоопасных газов. Предельный вакуум составляет 95% (в одноступенчатых насосах) и 99,5% (в двухступенчатых насосах) от теоретически возможного; например, при температуре воды 20°С — до 7,1 кн/м2 (53 мм рт. cт.) в одноступенчатых и 3,1 кн/м2 (23 мм рт. cт.) в двухступенчатых насосах.
Для получения среднего вакуума чаще применяют вращательные насосы с масляным уплотнением. Их рабочая камера заполнена маслом, либо они погружены в масляную ванну. Быстрота откачки этих насосов 0,1—750 л/сек, предельное давление 1 н/м2 (10-2 мм рт. ст.) в одноступенчатых и 10-1 н/м2 (10-3 мм рт. ст.) в двухступенчатых насосах. Масло хорошо уплотняет все зазоры, выполняет функцию дополнительной охлаждающей среды, однако при длительной работе сконденсированные пары загрязняют масло. Для предотвращения конденсации паров, возникающей при их сжатии, камеру заполняют определённым объёмом воздуха (балластным газом), который в момент выхлопа обеспечивает парциальное давление пара в паро-воздушной смеси, не превышающее давления насыщения. При этом пары из насоса выталкиваются без конденсации. Такие насосы называются газобалластными и применяются как форвакуумные (для создания предварительного разрежения).
Двухроторные насосы имеют 2 фигурных ротора, которые при вращении входят один в другой, создавая направленное движение газа. Эти насосы обладают большой быстротой откачки и часто применяются как промежуточные (вспомогательные, или бустерные) между форвакуумными и высоковакуумными. Они обеспечивают вакуум 10-2—10-3 н/м2 (10-4—10-5 мм рт. ст.) при быстроте откачки до 15 м3/сек (рис. 4а, 4б).
В молекулярных насосах при вращении ротора в газе молекулы получают дополнительную скорость в направлении их движения. Впервые такой насос был предложен в 1912 немецким учёным В. Геде, но долго не получал распространения из-за сложности конструкции. В 1957 немецкий учёный В. Беккер применил турбомолекулярный насос (рис. 5а, 5б), ротор которого состоит из системы дисков. Таким насосом получают вакуум до 10-8 н/м2 (10-10 мм рт. ст.).
В струйных насосах направленная струя рабочего вещества уносит молекулы газа, поступающие из откачиваемого объёма. В качестве рабочего вещества могут быть использованы жидкости или пары жидкостей. В зависимости от этого насосы называются водоструйными, пароводяными, парортутными или паромасляными. По принципу действия струйные насосы бывают эжекторными и диффузионными. В эжекторных насосах (рис. 6а, 6б) откачивающее действие струи основано на увеличении давления газового потока под действием струи более высокого напора. Такие насосы применяются для получения вакуума 10 н/м2 (10-1 мм рт. ст.). Простым эжекторным насосом является водоструйный насос, распространённый в лабораторной практике, в химической промышленности и др. Предельное давление таких насосов не намного превышает давление водяных паров. Например, при температуре воды в насосе, равной 20°С, достигаемый вакуум равен 3 100 н/м2 (23 мм рт. ст.), а парциальное давление остаточных газов около 670 н/м2 (5 мм рт. ст.). К эжекторным насосам может быть отнесён вихревой насос (аппарат), откачивающее действие которого основано на использовании разрежения, развивающегося вдоль оси вихря (рис. 7а, 7б). Значительно большей быстротой откачки и более низким предельным давлением обладают насосы, в которых рабочим веществом является водяной пар. В многоступенчатых пароводяных насосах быстрота откачки достигает 20 м3/сек, создаваемый вакуум 0,7 н/м2 (5 10-3 мм рт. ст.).
Откачивающее действие диффузионных насосов основано на диффузии молекул откачиваемого газа в области действия струи пара рабочего вещества за счёт перепада их парциальных давлений. В качестве рабочего вещества в 1915 В. Геде применил пары ртути. Ртуть обеспечивает постоянное (для данной температуры) давление насыщенного пара, постоянную (для данного давления) температуру, остаётся химически неактивной, не боится перегрева, но пары ртути, даже в небольшом количестве, опасны для человеческого организма. Одним из заменителей ртути является масло (см. Вакуумное масло). Такие В. н. называются паромасляными. Применение в качестве рабочей жидкости масла привело к широкому распространению таких насосов с быстротой откачки до нескольких сотен м3/сек при получении вакуума до 10-6 н/м2 (10-8 мм рт. ст.). В паромасляном В. н. последовательно соединены несколько откачивающих ступеней в одном корпусе (рис. 8а, 8б). Диапазон рабочих давлений трёхступенчатого паромасляного насоса 10-3—10-1 н/м2 (10-5—10-3 мм рт. ст.).
В сорбционных насосах используют способность некоторых веществ (например, Ti, Mo, Zr и др.) поглощать газ. Откачиваемый газ оседает на поверхности внутри вакуумной системы. Один из активных поглотителей постоянно напыляется на поглощающую поверхность (испарительный насос). Поглотителем может быть также пористый адсорбент (см. Адсорбционный насос).
Действие ионных насосов основано на ионизации газа сильным электрическим разрядом и удалении ионизованных молекул электрическим полем. Этот способ мало распространён из-за сложности устройства и большой потребляемой мощности, затрачиваемой главным образом на создание магнитного поля. При комнатной температуре инертные газы и углеводороды практически не поглощаются напылёнными плёнками металлов. Для их удаления служат комбинированные ионно-сорбционные, или ионно-геттерные, насосы, в которых сорбционный способ поглощения химически активных газов сочетается с ионным способом откачки инертных газов и углеводородов. Поглощающая поверхность обновляется осаждением на стенках термически испаряемого титана, а также катодным распылением титана в электрическом разряде или в магнитном поле в электроразрядных или магниторазрядных ионно-сорбционных насосах (рис. 9). Ионно-сорбционные В. н. при предварительной откачке до 10-2 н/м2 (до 10-4 мм рт. ст.) создают вакуум до 10-5 н/м2 (10-7 мм рт. ст.). Быстрота откачки зависит от рода газа. Например, быстрота откачки водорода 5000 л/сек, азота 2000 л/сек, аргона 50 л/ сек. Достигаемое предельное давление в хорошо обезгаженных объёмах и без натекания газа ниже 10-8 н/м2 (10-10 мм рт. ст.).
Действие конденсационных, или криогенных, насосов основано на поглощении газа охлажденной до низкой температуры поверхностью (рис. 10). Водородно-конденсационный насос, предложенный Б. Г. Лазаревым с сотрудниками (Физико-технического институт АН УССР), имеет постоянную быстроту откачки в широком диапазоне давлений. Охлаждающий жидкий водород вырабатывается ожижителем, находящимся в установке. Неконденсируемые газы (водород, гелий) откачиваются параллельно включенным насосом, например диффузионным. Для включения такого насоса необходимо предварительное разрежение.
Лит. см. при ст. Вакуумная техника.
И. С. Рабинович.

Рис. 1б. Общий вид поршневого насоса.

Рис. 3б. Общий вид водокольцевого вакуумного насоса.

Рис. 2б. Общий вид многопластинчатого вакуумного насоса.

Рис. 6б. Общий вид многоструйного эжекторного насоса.

Рис. 5б. Установка турбомолекулярного насоса с форвакуумным механическим насосом.

Рис. 8б. Общий вид трёхступенчатого паромасляного насоса.

Рис. 4б. Установка двухроторного насоса с форвакуумным механическим насосом.

Рис. 7б. Общий вид вихревого вакуумного насоса.

Рис. 1а. Схема поршневого насоса: Vo — откачиваемый объём; Vmin и Vmax — соответственно минимальный и максимальный объём цилиндра.

Рис. 2а. Схема многопластинчатого вакуумного насоса.

Рис. 3а. Схема водокольцевого вакуумного насоса: 1 — водяное кольцо; 2 — серповидная камера.

Рис. 4а. Схема двухроторного насоса.

Рис. 5а. Схема турбомолекулярного насоса.

Рис. 6а. Схема многоструйного эжекторного насоса.

Рис. 7а. Схема вихревого вакуумного насоса: 1 — центральное сопло; 2 — тангенциальное сопло; 3 — камера завихрения; 4 — диффузор; 5 — улитка.

Рис. 8а. Схема трёхступенчатого паромасляного насоса.

Рис. 9. Магнито-разрядный ионно-сорбционный насос: N, S — северный и южный полюсы; А — анод; К — катод.

Рис. 10. Криогенный насос.

Физический энциклопедический словарь:

Устройство для удаления газов и паров из замкнутого объёма с целью получения вакуума. В. н. делятся на проточные, к-рые удаляют газ из откачиваемого объёма наружу, и сорбционные, связывающие газ внутри насоса. Существуют также спец. имплантационные, палладиевые и каталитич. В. н. для откачки водорода. Осн. параметры В. н.: 1) предельное остаточное давление рост; 2) быстрота откачки S — объём газа, откачиваемый в ед. времени при определ. впускном давлении

Рис. 1. Области действия разл. типов вакуумных насосов: 1 — водокольцевых; 2 — поршневых; 3 — паро-масляных бустерных; 4 — механических бустерных; 5 — диффузионных; 6 — сорбционных.
3) производительность Q — кол-во газа (помимо паров рабочей жидкости), удаляемое В. н. в ед. времени при определённом pвп(Q=Sрвп); 4) наибольшее давление запуска рзап, при к-ром В. н. может начать работать; 5) наибольшее выпускное давление pмакс, при к-ром В. н. ещё может осуществлять откачку. В. н. бывают форвакуумные (для создания в системе низкого и среднего вакуума при рзап=760 мм рт. ст.) и высоковакуумные, создающие высокий и сверхвысокий вакуум, иногда между ними ставят промежуточный (бустерный) В. н. (рис. 1).
По принципу действия проточные В. н. подразделяются на механические, струйные (эжекторные и пароструйные), молекулярные (турбомолекулярные) и ионные. Механические В. н.— форвакуумные, они основаны на всасывании откачиваемого газа при периодич. увеличении объёма рабочей камеры и выталкивании газа на выход при уменьшении этого объёма и сжатии газа до давлений, достаточных для открывания выпускных клапанов.

Рис. 2. Поршневой насос: V0 — откачиваемый объём; П — поршень.

Рис. 3. Вращательный водокольцевой насос.
Механич. В. н. бывают поршневые (рис. 2) и вращательные. Во вращательных водокольцевых В. н. (рис. 3) вода центробежной силой прижимается к стенкам корпуса, образуя водяное кольцо 7 и рабочую камеру 2 (свободную от воды). Газ откачивается в результате изменения объёма рабочей камеры между лопатками ротора. Эти насосы могут откачивать смесь газа с парами воды, запылённые газы, кислород и др. взрывоопасные газы.

Рис. 4. Многопластинчатый насос.
Многопластинчатые В. н. (рис. 4) также содержат эксцентрично расположенный ротор, в прорези к-рого вставлены пластины, прижимаемые центробежной силой к внутр. поверхности корпуса. При этом образуются рабочие ячейки с изменяющимся объёмом. У наиболее распространённых вращат. В. н. (рис. 5) — насосах Геде, внутр. объём заполнен маслом, к-рое служит смазкой и препятствует натеканию воздуха в область низкого давления за счёт образования плёнки между вращающимися и неподвижными частями. Конденсация или растворение газов и паров в масле ухудшает параметры В. н. Это предотвращается напуском в рабочую камеру В. н. (после отделения её от впускного отверстия) атм. воздуха в таком кол-ве, чтобы к моменту выхлопа парц. давление паров не достигало давления насыщения.

Рис. 5. Вращательные масляные насосы: а — пластинчато-роторный; б — пластинчато-статорный; в — плунжерный; 1 — статор; 2 — ротор; 3 — разделительная пластина; 4 — пружина; 5 — выпускной клапан; 6 — рычаг; 7 — плунжер; 8 — золотник.

Рис. 6. Двухроторный насос (насос Рутса).
Действие двухроторных В. н. (насоса Рутса) основано на встречном вращении двух роторов (рис. 6) (предварит. разрежение 5—1 мм рт. ст.).
В струйных В.н. откачиваемый газ всасывается струёй жидкости или пара. Различают эжекторные (вихревые) и пароструйные В. н. В эжекторных В. н. газ увлекается турбулентной струёй жидкости (воды) или пара (воды или ртути), истекающей со сверхзвук. скоростью из сопла эжектора (рис. 7) за счёт турбулентного перемешивания или вязкостного трения граничных слоев струи и откачиваемого газа в камере смешения. Парогазовая смесь из камеры смешения поступает в расширяющийся диффузор, где скорость потока уменьшается, а статич. давление становится значительно выше, чем давление всасывания.

Рис. 7. Пароструйный насос.
В вихревых В. н. используется разрежение, развивающееся вдоль оси вихревого потока, создаваемого сжатым воздухом или перегретым паром.
В пароструйных В. н.— насосах Ленгмюра (рис. 8) струя пара 2 (масло, Hg), истекая с большой скоростью

Рис. 8. Насос Ленгмюра.
из сопла 1, захватывает откачиваемый газ, увлекает его к охлаждаемым стенкам рабочей камеры 3, где пар конденсируется. Конденсат по сливной трубе 4 возвращается в кипятильник 5. Газ, увлекаемый струёй к стенкам камеры, сжимается и выбрасывается к форвакуумному насосу. Захват газа (в диапазоне р=10-1—10-2 мм рт. ст.) происходит за счёт вязкостного трения между поверхностными слоями струи и прилегающими слоями газа; при р<10-3 мм рт. ст.— за счёт диффузии газа в струю и конвективного переноса молекул газа струёй в сторону форвакуума. При этом часть молекул откачиваемого газа, сталкиваясь с движущимися навстречу более тяжёлыми (рассеянными из струи) молекулами пара, отражается обратно. Часть газа, попавшего в струю, оказывается растворённой в конденсате и вместе с ним попадает в кипятильник, откуда затем выносится с парами через сопло. Этот процесс ограничивает получаемое рост. Для очистки конденсата от растворённого в нём газа применяется фракционирование рабочей жидкости внутри насоса. Хар-ки пароструйных В. н. зависят как от св-в рабочей жидкости, так и от массы молекул и откачиваемого газа. В составе остаточных газов, помимо паров Н2O, СО, СO2 и О2, есть множество углеводородных соединений и радикалов с массовым числом до 250 или пары Hg. Применяя в этих В. н. ловушки, удаляют углеводороды и пары Hg, что позволяет получить более низкое pост. Пароструйные В. н. делятся на бустерные (вязкостное трение и диффузия) и диффузионные (молекулярный режим).
В турбомолекулярных В. н. молекулы откачиваемого газа увлекаются быстро вращающимся ротором (скорость к-рого сравнима со скоростью теплового движения молекул), улавливаются и удаляются из откачиваемого объёма. Перепад давления между входом в насос и выходом из него пропорц. скорости и длине движущейся поверхности, соприкасающейся с потоком газа, и мол. весу газа. Такой насос напоминает горизонтальный (рис. 9) или вертикальный осевой многоступенчатый компрессор. Роторные и статорные диски такого насоса имеют радиальные косые прорези, боковые стенки к-рых наклонены относительно плоскости диска под углом 15—90°, причём прорези роторных дисков зеркальны относительно прорезей статорных дисков. При быстроте вращения ротора 6 600— 90 000 об/мин молекулы газа получают дополнит. скорость и увлекаются в каналы, образуемые прорезями в дисках, в направлении откачки. Осн. остаточный газ — Н2; есть небольшое кол-во СО, N2 и СO2; тяжёлые углеводородные соединения не обнаруживаются.
В сорбционных В.н. газ обычно остаётся внутри В.н. в связанном виде на сорбирующих поверхностях или в подповерхностных слоях; S пропорц. площади сорбирующей поверхности; pост зависит от процессов десорбции. Сорбц. В. н. подразделяются на адсорбционные, сорбционные с термич. распылением (геттерные, сублимационные), сорбционные с нераспыляемым геттером (ленточные), сорбционно-ионные (геттерно-ионные, ГИН), магниторазрядные (насос Пеннинга, ионно-распылительный) и криогенные. Возможны комбинации сорбционных геттерных В. н.
В адсорбционных В.н. связывание газа происходит на поверхностях пористых материалов (цеолит, реже активный уголь, силикагель) при темп-ре окружающей среды или пониженной (113—77 К).

Используются они как самостоятельные с pост=10-9 мм рт. ст. (10-7 Па) или как форвакуумные насосы с рост от 60 до 10-4 мм рт. ст. (до 10-2 Па).
В сорбционных испарительных (геттерных) В. н. поглощающая поверхность создаётся напылением химически активных металлов (Ва, Ti, Zr, Та, Mo и др.). Образующиеся плёнки поглощают большинство газов, присутствующих в вакуумных системах (O2, СO, СО2, пары Н2O), за счёт образования хим. соединений, хемосорбции (Н2) и растворения. Инертные газы и углеводороды практически не поглощаются, их удаляют вспомогательным пароструйным В. н. или ионной откачкой. Но полностью освободиться от углеводородов (напр., от СН4) не удаётся, они синтезируются на поверхности плёнки поглотителя, играющей роль катализатора. Это не позволяет получить рост меньше 10-9—10-11 мм рт. ст. Однако при напылении Ti на охлаждаемые (ниже 77 К) поверхности не только снижается кол-во Н2 и др. газов, но и прекращается образование СН4, что позволяет получить pост=10-11—10-13 мм рт. ст. Такие насосы требуют pзап=10-4 мм рт. ст. и в сочетании с диффузионным или магниторазрядным В. н. создают сверхвысокий вакуум при S до 106 л/с.
В сорбционных нераспыляемых (ленточных) В. н. поглощение осуществляется за счёт хемосорбции плёнкой высокопористых сплавов активных металлов и композитных материалов (напр., Zr+Al), наносимой в виде мелкодисперсного порошка на металлич. и диэлектрич. подложки. Такой геттер обладает интенсивным диффузионным переносом сорбиров. газов в толщу плёнки, возрастающим с повышением темп-ры. Такие насосы позволяют получить рост=10-11 — 10-13 мм рт. ст. при откачке активных тазов при Sуд до 1 л/с•см2.
В сорбционно-ионных В.н. молекулы газа ионизуются при соударении с эл-нами, эмиттированными накалёнными катодами. В В. н. типа ГИН положит. ионы, ускоренные электрич. полем, внедряются в покрывающий стенки насоса слой конденсированного сорбента и «замуровываются» его свежими слоями (рис. 10).

Рис. 10. Геттерно-ионные насосы ГИН; 1 — центр. анод; 2 — прогреваемый анод; 3 — катоды; 4 — прямоканальные испарители.
В насосах типа «Орбитрон» электрич. поле несимметрично относительно корпуса насоса и катода, и эмиттируемые катодом эл-ны движутся по орбитам достаточно долго, что увеличивает вероятность ионизации. Кроме того, часть эл-нов, траектории к-рых проходят вблизи центрального титанового стержневого анода, попадает на него, разогревая его до темп-ры, достаточной для сублимации Ti.

Рис. 11. Ячейка Пеннинга.
При р<10-6 мм рт. ст. испаряется неск. атомов Ti на одну молекулу откачиваемого газа; S достигает 106 л/с. При р>10-6 мм рт. ст. скорость испарения Ti недостаточна для обеспечения его избытка на поверхности поглощения, и 5 резко падает; рзап=10-4 мм рт. ст.
В магниторазрядных В. н. рабочим элементом явл. газоразрядная ячейкаячейка Пеннинга, состоящая из «ячеистого» анода (рис. 11), расположенного между катодными пластинами, покрытыми Ti. Ячейка помещена в магн. поле В=900—3000 Гс, перпендикулярное плоскости катодов. При подаче на электроды высокого напряжения (от 3 до 7 кВ) между ними зажигается разряд, эл-ны движутся по сложным спиралям, что увеличивает вероятность ионизации в высоком вакууме (=10-12—10-14 мм рт. ст.). Ускоренные электрич. полем ионы бомбардируют катоды, вызывая катодное распыление; при этом часть ионов внедряется в катоды, а часть — нейтрализуется и, обладая достаточной энергией, отражается от поверхности катода, попадает на анод и «замуровывается» распыляемым материалом катодов. Активные газы откачиваются сорбционным и ионным способами, инертные — ионным, причём часть их «замуровывается» на аноде. Величина разрядного тока в этих насосах пропорц. давлению, S зависит от числа ячеек (каждую ячейку можно рас сматривать как самостоят. насос с S от 0,25 до 1 л/с).
ОСНОВНЫЕ ПАРАМЕТРЫ ВАКУУМНЫХ НАСОСОВ

Действие криогенных (конденсационных) В. н. основано на конденсации и адсорбции паров и газов на поверхностях, охлаждаемых до низких темп-р, когда давление насыщ. паров откачиваемого в-ва ниже давления, к-рое необходимо создать в откачиваемом объёме. Криогенный В. н, состоит из: криопанели; защитного экрана, охлаждаемого до темп-р, промежуточных между темп-рой криопанели и стенки корпуса, и служащего для снижения тепловых нагрузок на криопанель от теплового излучения стенок корпуса насоса; системы охлаждения. Для откачки газов, неконденсируемых в насосе, применяют вспомогательный пароструйный насос с ловушкой или сорбционно-ионный насос.

Научно-технический словарь:

ВАКУУМНЫЙ НАСОС, устройство для откачивания воздуха из замкнутого пространства. При этом создается частичный ВАКУУМ. В простейшем вакуумном насосе вода или пар поступают в камеру, вытесняя воздух, и таким образом создается частичный вакуум. Первый вакуумный насос был изобретен немецким физиком Отто фон Герике (1602-86).

Техника. Современная энциклопедия:

вакуумный насос
Устройство, предназначенное для удаления (откачки) газов или паров из замкнутого объёма (системы) с целью получения в нём вакуума. Основные характеристики вакуумных насосов: предельное давление (остаточное давление или предельный вакуум); быстрота откачки – объём газа, откачиваемый при данном давлении в единицу времени. Различают следующие вакуумные насосы: механические, пароструйные, сорбционные, криогенные. В свою очередь, механические вакуумные насосы делятся на вращательные, двухроторные и турбомолекулярные. Среди вращательных вакуумных насосов наибольшее распространение получил пластинчато-роторный насос с масляным уплотнением. Всасывание и выталкивание газа в таком насосе осуществляется при изменении объёма ячеек, образованных эксцентрично расположенным ротором, в прорезях которого помещены подвижные пластины. Уплотнение зазоров между деталями насоса обеспечивается маслом. Двухроторный вакуумный насос состоит из двух фигурных роторов, которые при вращении создают в камере насоса направленное движение газа. Работа турбомолекулярного вакуумного насоса основана на использовании движения молекул газа в направлении его откачки при вращении ротора, состоящего из дисков. Принцип действия пароструйных насосов основан на захвате откачиваемого газа струёй пара.

Двухроторный вакуумный насос
В сорбционных вакуумных насосах используется способность сорбентов (напр., титана, молибдена) поглощать газ. Действие криогенных вакуумных насосов основано на поглощении газа поверхностью, охлаждённой до низкой (криогенной) температуры. В зависимости от обеспечиваемого диапазона давлений различают низковакуумные, средневакуумные, высоковакуумные и сверхвысоковакуумные насосы. Для получения сверхвысокого вакуума применяются криосорбционные вакуумные насосы, которые представляют собой криогенные насосы с тонкой плёнкой сорбента на внутренней поверхности камеры.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru