Определение слова «ПОГЛОЩЕНИЕ ЗВУКА»

Большой энциклопедический словарь:

ПОГЛОЩЕНИЕ ЗВУКА — ослабление интенсивности звука при прохождении его через какую-либо среду вследствие превращения энергии звуковой волны в другие виды энергии, напр. в теплоту.

Большая советская энциклопедия:

Поглощение звука
Превращение энергии звуковой волны в другие виды энергии, и в частности в тепло; характеризуется коэффициентом поглощения а, который определяется как величина, обратная расстоянию, на котором амплитуда звуковой волны уменьшается в е = 2,718 раз. а выражается в см-1 т. е. в Неперах на см или же в Децибелах на м (1 дб/м = 1,1510-3 см-1). П. з. характеризуют также коэффициент потерь = /: (где — длина волны звука) или добротностью Q = 1/. Величина называется логарифмическим декрементом затухания. При распространении звука в среде обладающей вязкостью и теплопроводностью,
, (1)
где — плотность среды, с — скорость звука в ней, — круговая частота звуковой волны, и — коэффициент сдвиговой и объёмной вязкости (См. Объёмная вязкость) соответственно, — коэффициент теплопроводности, Ср и Cv — теплоёмкости среды при постоянном давлении и объёме соответственно. Если ни один из коэффициентов , и не зависит от частоты, что часто выполняется на практике, то ~ 2. Если при прохождении звука нарушается равновесное состояние среды, П. з. оказывается значительно большим, чем определяемое по формуле (1). Такое П. з. называется релаксационным (см. Релаксация) и описывается формулой
,
где — время релаксации, c0 и c— скорости звука при << 1 и при > 1 соответственно. В этом случае П. з. сопровождается дисперсией звука. Величина /f2, где f = /2, является характеристикой вещества, определяющей П. з. Она, как правило, в жидкостях меньше, чем в газах, а в твёрдых телах для продольных волн меньше, чем в жидкостях.
П. з. в газах зависит от давления газа, разрежение газа эквивалентно увеличению частоты. Теплопроводность и сдвиговая вязкость в газах дают в П. з. вклад одного порядка величины. В жидкостях П. з. в основном определяется вязкостью, а вклад теплопроводности пренебрежимо мал. В большинстве жидкостей для П. з. существенны объёмная вязкость и релаксационные процессы. Частота релаксации в жидкостях, т. е. величина р = 1/, как правило, очень велика и область релаксации оказывается лежащей в диапазоне высоких ультразвуковых и гиперзвуковых частот. Коэффициент П. з. обычно сильно зависит от температуры и от наличия примесей.
П. з. в твёрдых телах определяется в основном внутренним трением и теплопроводностью среды, а на высоких частотах и при низких температурах — различными процессами взаимодействия звука с внутренними возбуждениями в твёрдом теле, такими, как фононы, электроны, спиновые волны и пр. Величина П. з. в твёрдом теле зависит от кристаллического состояния вещества (в монокристаллах П. з. обычно меньше, чем в поликристаллах), от наличия дефектов, примесей и дислокаций (См. Дислокации), от предварительной обработки, которой был подвергнут материал. В металлах, подвергнутых предварительной термообработке, а также ковке, прокатке и т.п., П. з. часто зависит от амплитуды звука. Во многих твёрдых телах при не очень высоких частотах ~ , поэтому величина добротности не зависит от частоты и может служить характеристикой потерь материала. Самое малое П. з. при комнатных температурах было обнаружено в некоторых диэлектриках, например в топазе, берилле, железоиттриевом гранате ( ~ 15 дб/см при f = 9 Ггц). В металлах и полупроводниках П. з. всегда больше, чем в диэлектриках, поскольку имеется дополнительное поглощение, связанное с взаимодействием звука с электронами проводимости. В полупроводниках это взаимодействие при определённых условиях может приводить к «отрицательному поглощению», т. е. к усилению звука (см. Усиление ультразвука). С ростом температуры П. з., как правило, увеличивается.
Наличие неоднородностей в среде приводит к увеличению П. з. В различных пористых и волокнистых веществах П. з. велико, что позволяет применять их для заглушения и звукоизоляции.
Лит.: Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А. и Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 2, ч. А, т. 3, ч. Б, М., 1968—1969: т. 7, М., 1974; Труэлл P., Эльбаум Ч., Чик Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972.
А. Л. Полякова.

Физический энциклопедический словарь:

Явление необратимого перехода энергии звуковой волны в др. виды энергии и, в частности, в теплоту. Характеризуется коэфф. поглощения а, к-рый определяется как обратная величина расстояния, на к-ром амплитуда звуковой волны уменьшается в е=2,718 раз. Коэфф. a выражается в см-1, т. е. в неперах на 1 см или же в децибелах на 1 м (1 дБ/м=1,15•10-3 см-1). П. з. характеризуется также коэфф. потерь e=al/p (где l — длина волны звука) или добротностью Q=1/e. Величина al —«логарифмич. декремент затухания.
При распространении звука в среде, обладающей вязкостью и теплопроводностью,
где r — плотность среды, с — скорость звука в ней, w — круговая частота звуковой волны, т) и z — коэфф. сдвиговой и объёмной вязкости соответственно, c — коэфф. теплопроводности, Ср и Cv — теплоёмкости среды при пост. давлении и объёме. Если ни один из коэфф. h, z, c не зависит от частоты, что часто выполняется на практике, то a=w2. Величина a/f2, где f=w/2p, явл. xap-кой в-ва, определяющей П. з. Она, как правило, в жидкостях меньше, чем в газах, а в тв. телах для продольных волн меньше, чем в жидкостях. Напр., в воздухе при норм. давлении для частот от 100 до 400 кГц a/f2=3,0•10-13 см-1с2, а в воде в диапазоне частот от 0,1 до 1000 кГц a/f2=3,5•10-16 см-1с2.
Если при прохождении звука нарушается равновесное состояние среды, П. з. оказывается значительно большим, чем определяемое по ф-ле (1). Такое П. з. наз. релаксационным (см. РЕЛАКСАЦИЯ АКУСТИЧЕСКАЯ) и описывается ф-лой
где т — время релаксации, с0 и с?— скорости звука при wt<-1 и при wt>1 соответственно. В этом случае П. з. сопровождается дисперсией звука.
В газах теплопроводность и сдвиговая вязкость дают в П. з. вклад одного порядка величины. П. з. зависит от давления в газе, поскольку частота релаксации с понижением давления падает. В жидкостях П. з. в основном определяется вязкостью, а вклад теплопроводности пренебрежимо мал. В большинстве жидкостей для П. з. существенны релаксац. процессы. Частота релаксации в жидкостях, т. е. величина wр=1/t, как правило, очень велика и область релаксации оказывается лежащей в диапазоне высоких УЗ-вых и гиперзвуковых частот. Коэфф. П. з. обычно сильно зависит от темп-ры и от наличия примесей.
П. з. в тв. телах определяется в основном внутр. трением и теплопроводностью среды, а на высоких частотах и при низких темп-pax — разл. процессами вз-ствия звука с внутр. возбуждениями в тв. теле (фононами, электронами проводимости, спиновыми волнами и др.). Величина П. з. в тв. теле зависит от кристаллич. состояния в-ва (в монокристаллах П. з. обычно меньше, чем в поликристаллах), от наличия дефектов (примесей, дислокаций и др.), от предварит. обработки материала. В металлах, подвергнутых предварит. механич. обработке (ковке, прокатке и т. п.), П. з. часто зависит от амплитуды звука. Во многих тв. телах при не очень высоких частотах a=w, поэтому величина добротности не зависит от частоты и может служить хар-кой потерь материала. Самое малое П. з. при комнатных темп-pax было обнаружено в нек-рых диэлектриках, напр. в топазе, берилле a=15 дБ/см при f=9 ГГц, железоиттриевом гранате a=25 дБ/см при той же частоте. В металлах и полупроводниках П. з. всегда больше, чем в диэлектриках, поскольку имеется дополнит. поглощение, связанное с вз-ствием звука с эл-нами проводимости. В полупроводниках это вз-ствие может приводить к «отрицат. поглощению», т. е. к усилению звука при условии, что скорость дрейфа носителей заряда превышает скорость распространения звуковой волны (подробнее (см. АКУСТОЭЛЕКТРОННОЕ ВЗАИМОДЕЙСТВИЕ)). С ростом темп-ры П. з., как правило, увеличивается. Наличие неоднородностей в среде приводит к увеличению П. з. В разл. пористых и волокнистых в-вах П. з. велико, что позволяет применять их для глушения звука и звукоизоляции. С увеличением интенсивности звука проявляется нелинейное П. з., к-рое зависит от амплитуды волны и обусловлено тем, что происходит передача энергии в высшие сильно поглощающиеся компоненты спектра волны.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru