Определение слова «релаксация»

Большой энциклопедический словарь:

РЕЛАКСАЦИЯ — в физиологии — расслабление или резкое снижение тонуса скелетной мускулатуры вплоть до полного обездвижения. Может возникнуть как патологическое состояние; искусственная релаксация достигается применением миорелаксантов.

Биология современная энцикопедия:

релаксация
Расслабление скелетной мускулатуры (вплоть до полного обездвиживания) в результате снижения мышечного тонуса. Состояние релаксации естественно возникает во время сна, что способствует более полноценному отдыху и восстановлению физических сил. Достигается здоровыми людьми в результате аутотренинга (даёт кратковременный отдых); используется во время сеансов психотерапии при лечении больных, страдающих нервными расстройствами. Искусственная релаксация наблюдается под действием лекарств – миорелаксантов, применяемых при подготовке к хирургическим операциям.

Большая советская энциклопедия:

I
Релаксация (от лат. relaxatio — ослабление, уменьшение)
процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц. Р. — многоступенчатый процесс, т. к. не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и др.) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется Р. Все процессы Р. являются неравновесными процессами (См. Неравновесные процессы), при которых в системе происходит диссипация энергии, т. е. производится Энтропия (в замкнутой системе энтропия возрастает). В различных системах Р. имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы Р. весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.
Процесс установления равновесия в газах определяется длиной свободного пробега частиц l и временем свободного пробега (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение l/ имеет порядок величины скорости частиц. Величины l и очень малы по сравнению с макроскопическими масштабами длины и времени. С др. стороны, для газов время свободного пробега значительно больше времени столкновения 0 ( >> 0). Только при этом условии Р. определяется лишь парными столкновениями молекул.
В одноатомных газах (без внутренних степеней свободы, т. е. обладающих только поступательными степенями свободы) Р. происходит в два этапа. На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным т. н. «сокращённое описание» неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, т. е. одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трёх и т. д. частиц, зависят от времени лишь через одночастичную функцию). Одночастичная функция удовлетворяет кинетическому уравнению Больцмана (См. Кинетическое уравнение Больцмана), которое описывает процесс Р. Этот этап называется кинетическим и является очень быстрым процессом Р. На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объёмах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объёмы содержат ещё очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближённо изолированными. Параметры локально-равновесного распределения в процессе Р. медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время Р. для локального равновесия р — 0. После установления локального равновесия для описания Р. неравновесного состояния системы служат уравнения гидродинамики (НавьеСтокса уравнения, уравнения теплопроводности (См. Теплопроводность), диффузии (См. Диффузия) и т.п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время и на расстоянии l. Этот этап Р. называется гидродинамическим. Дальнейшая Р. системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений. Такие процессы (Вязкость, теплопроводность, диффузия, Электропроводность и т. п.) называются медленными. Соответствующее время P. tp зависит от размеров L системы и велико по сравнению с : t0 ~ (L/l)2 >> , что имеет место при l << L, т.е. для не сильно разреженных газов.
В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс Р., связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных газах возможны многоступенчатые процессы Р. энергии колебательных и вращательных степеней свободы.
В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы Р. их температур. Например, в плазме (См. Плазма) сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы Р. температур компонент.
В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины 1 и l1 — время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; 1 и l1 характеризуют затухание во времени и в пространстве взаимного влияния молекул, т. е. корреляции. При этом полностью остаётся в силе понятие гидродинамического этапа Р. и локально-равновесного состояния. В макроскопически малых объёмах жидкости, но ещё достаточно больших по сравнению с длиной корреляции l1, локально-равновесное распределение устанавливается за время порядка времени корреляции 1(p — 1) в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объёмы по-прежнему можно считать приближённо изолированными. На гидродинамическом этапе Р. в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время 1 и на расстоянии l1). Время Р. к полному термодинамическому равновесию tp — 1 (L/l1)2 (так же, как в газе и твёрдом теле) можно оценить с помощью кинетических коэффициентов (см. Кинетика физическая). Например, время Р. концентрации в бинарной смеси в объёме L3 порядка tp — L2/D, где D — коэффициент диффузии, время Р. температуры tp — L2/ где — коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания Р. внутренних степеней свободы (релаксационная гидродинамика).
В твёрдых телах, как и в квантовых жидкостях (См. Квантовая жидкость), Р. можно описывать как Р. в газе квазичастиц (См. Квазичастицы). В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы). Например, в кристаллической решётке при низких температурах упругие колебания можно трактовать как газ Фононов. Взаимодействие между фононами приводит к квантовым переходам, т. е. к столкновениям между ними. Р. энергии в кристаллической решётке описывается кинетическим уравнением для фононов. В системе спиновых магнитных моментов ферромагнетика (См. Ферромагнетики) квазичастицами являются Магноны; Р. (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Р. магнитного момента в ферромагнетике происходит в два этапа: на первом этапе за счёт относительно сильного обменного взаимодействия (См. Обменное взаимодействие) устанавливается равновесное значение абсолютной величины магнитного момента. На втором этапе за счёт слабого спин-орбитального взаимодействия (См. Спин-орбитальное взаимодействие) магнитный момент медленно ориентируется вдоль оси лёгкого намагничивания; этот этап аналогичен гидродинамическому этапу Р. в газах (см. Релаксация магнитная).
Лит.: Уленбек Д., форд Дж., Лекции по статистической механике, пер. с англ., М., 1965. См. также лит. при ст. Кинетика физическая.
Д. Н. Зубарев.
II
Релаксация
расслабление (физиологическая, медицинская), понижение Тонуса скелетной мускулатуры, вызываемое, в частности, различными химическими веществами и проявляющееся в снижении двигательной активности или полном обездвижении (параличе). Широта распространения, степень и продолжительность Р. зависят от места нарушения проведения нервного импульса (См. Проведение нервного импульса) и примененного химического вещества. Наркотические средства действуют на центральные отделы нервной системы и вызывают распространённую, но неполную Р. Вещества, используемые для местной анестезии, действуют на периферические нервы, вызывая местную неполную Р. Наиболее распространённая и полная Р. наблюдается при введении специальных препаратов — мышечных релаксантов (См. Релаксанты).
Лит. см. при статьях Курареподобные средства и Курарины.

Большой словарь иностранных слов:

Релаксации, ж. [от латин. relaxatio – ослабление, уменьшение напряжения]. Расслабление.

Толковый словарь Кузнецова:

релаксация
РЕЛАКСАЦИЯ -и; ж. [от лат. relaxatio — ослабление, уменьшение напряжения]
1. Физ. Процесс постепенного возвращения в состояние равновесия какой-л. системы после прекращения действия факторов, выведших её из состояния равновесия. Время релаксации полимерных материалов.
2. Мед. Искусственное понижение тонуса скелетной мускулатуры, осуществляемое, в частности, при некоторых хирургических операциях. Постепенная р. Метод релаксации.
3. Снятие психологического напряжения. Кабинет релаксации (психологической разгрузки).
Релаксационный, -ая, -ое. Р-ая поза.

Орфографический словарь Лопатина:

орф.
релаксация, -и

Физический энциклопедический словарь:

(от лат. relaxatio -ослабление, уменьшение), процесс установления равновесия термодинамического в макроскопич. физ. системах (газах, жидкостях, тв. телах). Состояние макроскопич. системы определяется большим числом параметров, и установление равновесия по каждому из параметров может протекать различно. Количеств. хар-кой Р. служит в р е м я р е л а к с а ц и и. Строго говоря, время t, необходимое для установления полного термодинамич. равновесия, бесконечно велико, т. к. в процессе Р. всегда наступает период т. н. линейной Р., когда параметры Xi, описывающие состояние системы (плотность r, темп-ра Т и др.), лишь незначительно отличаются от своих равновесных значений X=i, а скорости их изменения со временем X.i=dXi/dt, пропорц. отклонениям Хi от Х=i:
за времена ti малые отклонения параметров X; от равновесных значений уменьшаются в е раз; ti наз. временами P., a 1/ti=ni — частотами Р. Значения ti определяются св-вами системы, зависят от её состояния и внеш. условий. Напр., эл-ны проводников приходят в состояние равновесия за 10-13 — 10-14 с, а приближение к равновесию крист. структур в земной коре длится геол. эпохи. Физ. система может, достигнув равновесного состояния по одним параметрам, остаться неравновесной по другим, т. е. находиться в состоянии частичного равновесия. Релаксирующая система проходит, как правило, через состояния частичного равновесия.
Все процессы Р.— неравновесные процессы, сопровождающиеся возрастанием энтропии системы, их исследованием занимается кинетика физическая.
Микроскопическая теория Р. базируется на молекулярно-кинетической теории, рассматривающей процессы в макроскопич. системах как проявление движения и вз-ствия атомных и субатомных ч-ц. Теория Р. наиб. разработана применительно к газам, в к-рых равновесие устанавливается благодаря столкновению ч-ц газа. При столкновениях ч-цы обмениваются энергиями и импульсами. Частоты столкновений и эффективность обмена выражаются через вероятности столкновений. Вероятности обмена энергиями и импульсами при столкновениях для ч-ц разл. сортов могут существенно отличаться, что сказывается на релаксац. процессах в системе. В электронно-ионной плазме, напр., различие масс эл-нов и ионов приводит к тому, что эти ч-цы легко обмениваются импульсами, но обмен энергией между подсистемами эл-нов и ионов затруднён. В самих же подсистемах (при электрон-электронных и ион-ионных столкновениях) обмен импульсами и энергиями идёт в одном темпе. В результате быстро устанавливается равновесие в ионной и электронной подсистемах плазмы в отдельности, но равновесие в плазме в целом устанавливается медленнее. Аналогичная ситуация наблюдается в газах из многоатомных молекул, где подсистемами явл. поступат. и внутр. степени свободы. Обмен энергией между этими видами степеней свободы затруднён. Быстрее всего устанавливается равновесие по поступат. степеням свободы, потом — по внутренним и медленнее всегомежду поступат. и внутренними. В этих условиях частично равновесное состояние может быть описано введением разл. темп-р подсистем. Самый медленный процесс— выравнивание темп-р подсистем -последний этап Р. Хар-ками столкновений в газе явл. ср. время свободного пробега ч-ц tпр и его длина l=vtпр (v — ср. скорость ч-ц). По порядку величины tпр совпадает с временем установления локального равновесия в объеме газа =l3 (б ы с т р а я Р.). Локально-равновесное состояние описывается макроскопич. параметрами (Т, r и др.), к-рые различны для разных локально-равновесных частей системы, но выравниваются, когда система приходит в полное равновесие. Газ можно считать макроскопич. системой, если l <- L, где L — характерное расстояние (напр., размер сосуда). Переход от локального к полному равновесию (выравниванию темп-р, плотности) требует макроскопически большого числа столкновений (м е д л е н н а я Р.) и из-за случайности столкновений имеет диффузионный хар-р. Этот этап Р. описывается ур-ниями гидродинамики, диффузии, теплопроводности и т. п., содержащими релаксац. и кинетич. коэффициенты. Кинетич. коэфф. могут быть выражены через частоты Р. и длины свободного пробега (или через вероятности столкновений). Так, напр., время выравнивания темп-ры tT»L2/c, где c=lv — коэфф. температуропроводности; ф-ле можно придать вид tT » tпр(L/l)2, из к-рого следует, что Р. темп-ры происходит в результате (L/l)2 столкновений.
Медленная Р. в жидкостях и тв. телах также описывается ур-ниями гидродинамики, диффузии, теплопроводности и т. д., однако релаксац. и кинетич. коэфф. в случае обычных жидкостей не могут быть в общем случае выражены через вероятности микроскопич. процессов. В случае квантовых жидкостей и кристаллов кинетич. коэфф. выражаются через вероятности столкновений квазичастиц. Напр., теплопроводность диэлектрика пропорц. длине свободного пробега фононов, а электропроводность металлов и ПП — длине пробега эл-нов проводимости. Квазичастицы имеют конечные времена жизни, к-рые могут служить для оценки времён Р. в тв. телах (напр., время Р. полупроводника после выключения освещения определяется временем рекомбинации эл-нов и дырок).
Связь между кинетич. коэфф. и хар-ками столкновений ч-ц и квазичастиц устанавливается на основе ур-ний (кинетического уравнения Больцмана, в сложных случаях — квантового кинетич. ур-ния, ур-ния для матрицы плотности, с привлечением метода функций Грина и т. п.).
Релаксация и резонансное поглощение энергии. Р. в экспериментах проявляется, как правило, косвенно в затухании макроскопич. движений, в ограничении потоков ч-ц и теплоты, возникающих в телах под воздействием внеш. сил, а также в зависимости кинетич/ коэфф. (электропроводности, внутр. трения и др.) от частоты (о, если вынуждающая сила периодически изменяется во времени. Частотная зависимость (дисперсия) кинетич. коэфф.— одно из наиболее непосредств. проявлений релаксац. процессов. Сопротивление среды (её стремление остаться в состоянии равновесия, несмотря на воздействие внеш. силы) приводит к уменьшению эффективности воздействия с ростом w. Если при статич. силе fi отклонение Xi от положения равновесия составляет DXi=tifi, то при перем. силе той же амплитуды, fi(t)=ficoswt, отклонение DXi=
Эфф. уменьшение воздействия с ростом частоты w и сдвиг по фазе между fi и DХi приводят, как правило, к немонотонной зависимости от w поглощённой за период энергии Q(w) =wti/(1+(wti)2). Наличие у Q(w) максимума при wti=1 наз. к и н е м а т и ч е с к и м (релаксационным) р е з о н а н с о м. Исследование кинематич. резонанса — удобный метод измерения времени Р. Обнаружение неск. максимумов на кривой Q(w) свидетельствует о существовании неск. механизмов Р. Связь Р. с частотной зависимостью кинетич. коэфф. проявляется особенно отчётливо в тех случаях, когда в системе наблюдается резонансное поглощение эл.-магн. или звук. энергии: ширина резонансной кривой Dw пропорц. частоте Р. резонирующего параметра (Dw=ni).
Релаксация и фазовые переходы. Р. может сопровождаться фазовым переходом. Если переход из неравновесного в равновесное состояние -фазовый переход I рода, то сначала система перейдёт в метастабильное состояние, выйти из к-рого она может, только преодолев межфазовый потенц. барьер путём образования и роста (вплоть до критич. размеров) зародышей стабильной фазы. Необходимость достижения критич. зародышами макроскопич. размеров часто делает Р. из метастабильной фазы в стабильную столь медл. процессом, что метастабильные фазы ведут себя как равновесные (см. АМОРФНОЕ СОСТОЯНИЕ, НЕУПОРЯДОЧЕННЫЕ СИСТЕМЫ).
С приближением к точке фазового перехода II рода (происходящего при темп-ре Тс) параметр порядка h, характеризующий различие св-в фаз, стремится к нулю, что приводит к увеличению его времени P. (th®? при Т -Tc®0). Замедление релаксац. процессов вблизи Тс накладывает отпечаток на все кинетич. хар-ки тел в этой области темп-р (см. КРИТИЧЕСКИЕ ЯВЛЕНИЯ).
Магнитная Р. Сравнительно слабая связь спинов атомных и субатомных ч-ц с движением ч-ц (колебаниями крист. решётки, орбитальным движением эл-нов проводимости в кристалле) делает систему спинов квазинезависимой подсистемой тела. В силу этого равновесие внутри спиновой системы магнитоупорядоч. сред (ферро- и антиферромагнетиков) наступает, как правило, раньше, чем всё тело приходит в состояние равновесия. В этих условиях спиновой подсистеме можно приписать темп-ру (спиновая темп-ра), к-рая будет отличаться от темп-ры тела, обусловленной движением атомов и молекул. Процесс установления равновесия в спиновой подсистеме тела наз. м а г н и т и о й Р. Магн. Р. усложняется существованием сил разл. природы, действующих между спинами. Обменные силы (см. ОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ), наибольшие по величине, не могут изменить ср. магн. момента системы, даже если он имеет неравновесное значение, но выравнивают темп-ру в спиновой подсистеме. Релятив. силы вз-ствия между спинами (спин-орбитальные, магнитодипольные и др., (см. ФЕРРОМАГНЕТИЗМ)) ответственны за Р. ср. магн. момента, причём разные компоненты магн. момента релаксируют с разной скоростью.
Р. в парамагнетиках компонента магн. момента, к-рый перпендикулярен приложенному магн. полю, связана со спин-спиновым вз-ствием (время P. t1), а Р. продольного компонента — со спин-решёточным (спин-фононным) вз-ствием (время Р. t2). Обычно t1>t2, а разл. природа Р. проявляется не только в числ. различии времён Р., но и в разных зависимостях от темп-ры. Магн. Р. яд. спинов обладает особенностями, обусловленными их сравнительно слабым вз-ствием с др. степенями свободы тв. тела и друг с другом. Из-за этого время ядерной Р., как правило, превосходит др. времена Р.
Магн. Р. проявляется в процессах намагничивания и перемагничивания (см. МАГНИТНАЯ ВЯЗКОСТЬ), она определяет ширину линий магн. резонансов и дисперсию магн. восприимчивости. Магн. Р. ограничивает применимость магнетиков в технике и в физ. эксперименте. Т. к. магн. Р. (как и др. релаксац. процессы) существенно зависит от структуры тела и его хим. состава (в кристаллах — от наличия дислокаций и др. дефектов), то время магн. Р. можно изменять технологич. обработкой (легированием, закалкой и т. п.).

Большой психологический словарь:

(от лат. relaxatio — облегчение, расслабление)общее состояние покоя, расслабленности при отходе ко сну, после сильных переживаний или физических усилий, а также полное или частичное мышечное расслабление, наступающее в результате произвольных усилий типа аутогенной тренировки. Возможна долговременная Р. (во время сна, гипноза, при некоторых фармакологических воздействиях) и относительно кратковременная, в т. ч. периодическая Р., чередующаяся с напряжением.
В целом ряде случаев Р. оказывается необходимой, и разрабатываются специальные приемы ее обеспечения. Так, частичная или периодическая Р. — непременное условие всякой спортивной тренировки; Р. мышц речевого аппарата необходима для логопедических корректирующих упражнений; общая Р. — обязательная стадия самогипноза и т. д. Наиболее известными способами вызывания полной или частичной Р. являются аутогенная тренировка, гипноз и двигательная терапия. В последние годы для обеспечения наступления Р. широко применяются разнообразные варианты биологической обратной связи. См. также НЕРВНО-МЫШЕЧНАЯ РЕЛАКСАЦИЯ.

Социологический словарь:

РЕЛАКСАЦИЯ (от лат. relaxatio — ослабление) — англ. relaxation; нем. Relaxation. 1. Процесс постепенного возвращения в состояние равновесия. 2. Общее состояние покоя, расслабленности после сильных переживаний или физических усилий, а также полное или частичное мышечное расслабление, наступающее в результате произвольных усилий, типа аутогенной тренировки.

Грамматический словарь Зализняка:

Релаксация, релаксации, релаксации, релаксаций, релаксации, релаксациям, релаксацию, релаксации, релаксацией, релаксациею, релаксациями, релаксации, релаксациях

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru