Определение слова «Размерность»

Толковый словарь Ушакова:

РАЗМЕ́РНОСТЬ, размерности, мн. нет, ·жен. (физ.). Выражение, показывающее, из каких основных единиц складывается единица измерения данной величины. Размерность скорости есть отношение длины ко времени.

Большой энциклопедический словарь:

РАЗМЕРНОСТЬ — число измерений геометрической фигуры. Линия имеет размерность, равную 1 (одномерный образ); поверхность (в частности, плоскость или часть ее) — размерность, равную 2 (двумерный образ); пространство, а также любая его ограниченная часть — размерность, равную 3 (трехмерный образ, геометрическое тело). С развитием понятия многомерного пространства геометрия стала заниматься фигурами любой размерности.

Большая советская энциклопедия:

I
Размерность (число измерений)
геометрической фигуры, число, равное единице, если фигура есть линия; равное двум, если фигура есть поверхность; равное трём, если фигура представляет собой тело. С точки зрения аналитической геометрии Р. фигуры равна числу координат, нужных для определения положения лежащей на этой фигуре точки; например, положение точки на кривой определяется одной координатой, на поверхности — двумя координатами, в трёхмерном пространстве — тремя координатами. Геометрия до середины 19 в. занималась только фигурами первых трёх Р. С развитием в середине 19 в. понятия о многомерном пространстве (См. Многомерное пространство) геометрия начинает заниматься фигурами любой Р. Простейшими фигурами размерности m являются m-мерные многообразия (См. Многообразие); m-мерное многообразие, расположенное в n-меpном пространстве, задаётся при помощи n — m уравнений (например, линия, т. е. одномерное многообразие, в трёхмерном пространстве задаётся 3 — 1 = 2 уравнениями). Положение точки на m-мерном многообразии определяется «криволинейными» координатами (например, положение точки на сфере определяется её «географическими координатами» — долготой и широтой; аналогично на торе). Приведённые выше положения справедливы лишь при некоторых ограничительных предположениях. Действительно общее определение Р. любого замкнутого ограниченного множества, лежащего в n-mepном евклидовом пространстве, было дано П. С. Урысоном: оказывается, для того чтобы такое множество имело размерность m, необходимо и достаточно, чтобы оно при любом > 0 допускало -Покрытие (замкнутыми множествами, имеющими кратность n + 1). Приведённое выше общее определение Р. допускает естественное обобщение на очень широкие классы топологических пространств (См. Топологическое пространство). Урысон построил в 1921 теорию Р. — одну из глубоких теорий современной топологии. Своим дальнейшим развитием теория Р. обязана главным образом советским математикам (П. С. Александров, Л. С. Понтрягин и др.).
Лит.: Александров П. С., Пасынков Б. А., Введение в теорию размерности, М., 1973.
II
Размерность
физической величины, выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные. Р. представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями Р. Так, например, Р. скорости LT—1, где Т представляет собой Р. времени, а L — Р. длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т.д.). В ряде случаев Р. позволяет устанавливать связи между соответствующими величинами (подробнее см. Размерностей анализ).

Толковый словарь Кузнецова:

размерность
РАЗМЕРНОСТЬ -и; ж.
1. Физ. Связь данной величины с величинами, взятыми за основные в какой-л. системе единиц. Р. скорости есть отношение длины ко времени.
2. Матем. Число измерений геометрической фигуры. Геометрия занимается фигурами любой размерности.

Малый академический словарь:

размерность
-и, ж. физ.
Выражение, показывающее связь данной величины с величинами, взятыми за основные в какой-л. системе единиц.

Математическая энциклопедия:

Топологического пространства X — целочисленный инвариант dim X, определяемый следующим образом. Тогда и только тогда dim X = -1, когда . О непустом тополо-гич. пространстве Xговорят, что оно не более чем n-мерно, и пишут dim , если в любое конечное открытое покрытие пространства Xможно вписать конечное открытое покрытие пространства Xкратности . Если для нек-рого п=-1,0,1,. . ., то пространство Xназ. конечномерным, пишется и считается При этом если dim X = n, то пространство наз. n-мерным. Понятие Р. топологич. пространства обобщает элементарно-геометрич. понятие числа измерений евклидова пространства (и полиэдра), т. к. размерность n-мерного евклидова пространства (и любого n-мерного полиэдра) равна n (теорема Брауэра — Лебега). Важность понятия Р. топологич. пространства выявляется теоремой Нёбелинга — Понтрягина — Гуревича -Куратовского: n-мерное метризуемое со счетной базой пространство вкладывается в (2n+1)-мерное евклидово пространство. Таким образом, класс пространств, топологически эквивалентных подпространствам всевозможных n-мерных евклидовых пространств, n=1, 2,. . ., совпадает с классом конечномерных метризуемых пространств со счетной базой. dim Xиногда наз. лебеговой, т. Наиболее содержательна теория Р. прежде всего в классе метрич. пространств со счетной базой и затем в классе любых метрич. пространств. В классе мет-рич. пространств со счетной базой выполняются равенства Урысона dimX = indX = IndX. (2) В классе любых метрич. пространств выполняется р а-венство Катетова dimX = IndX (3) и может быть ind X=0<IndX=l. В случае метрич. пространств понятие n-мерного пространства следующими двумя способами может быть сведено к понятию нульмерного пространства. Для метрич. пространства Xтогда и только тогда , n=0,1,. . ., когда а) пространство X может быть представлено в виде не более чем n+1 нульмерных слагаемых; б) существует непрерывное замкнутое отображение кратности нульмерного метрич. пространства на пространство X. Для любого подмножества Аметрич. пространства Xнайдется такое подмножество типа в X, что dim B=dim A. В классе метрич. пространств веса и размерности существует универсальное (в смысле вложений) пространство. Важную роль в построении теории Р. любых метрических (и более общих) пространств сыграла теорема Даукера: тогда и только тогда dim , когда в любое локально конечное открытое покрытие пространства X можно вписать открытое покрытие кратности Одним из наиболее важных вопросов теории Р. является вопрос о соотношениях между лебеговой и индуктивными Р. Хотя для произвольного пространства Xзначения размерностей dim X,ind X,Ind X, вообще говоря, попарно различны, однако для нек-рых классов пространств, в том или ином смысле близких к метрическим, выполнено, напр., следующее: а) если пространство Xобладает непрерывным замкнутым отображением f размерности dim f=0 на метрич. пространство, то выполняется равенство (3), отсюда следуют равенства (2) для локально бикомпактных групп и их факторпространств; б) если существует непрерывное замкнутое отображение метрич. пространства на пространство X, то выполняются равенства (2). Еще одно общее условие для выполнения равенства (3) для паракомпакта Xвыглядит так: dim X=n и пространство X является образом нульмерного пространства при замкнутом отображении кратности , n=0,1,. . . В случае произвольного пространства X всегда выполняются неравенства , а равенства dim Х = 0 и IndX = 0 равносильны. Для сильно паракомпактного (в частности, бикомпактного или финально компактного) пространства X выполняется неравенство dim . Для бикомпактов равенства ind X=l и IndX = l равносильны. Существуют бикомпакты, удовлетворяющие первой аксиоме счетности (и даже совершенно нормальные в предположении континуум-гипотезы), для которых dim Х=1, ind X=n, n=2,3,. . . Построен пример топологич. однородного бикомпакта с dim X<ind X. Для совершенно нормальных бикомпактов всегда ind X=Ind X. Существуют бикомпакты даже с первой аксиомой счетности, для к-рых indX<IndX. Существует ли такое т, что для каждого n>m найдется бикомпакт (метрич. пространство) X с ind X=m,Ind X = n,- неизвестно (1983). В случае неметризуемых пространств Р. может не только не быть монотонной, но и обладает другими патологич. свойствами. Для любого n=2,3,. . . построен пример такого бикомпакта , что любое замкнутое подмножество его имеет Р. или 0 или . Аналогичный пример в случае индуктивных Р. невозможен. Построен также для любого n=1,2,. . .пример такого бикомпакта , что любое разбивающее этот бикомпакт замкнутое множество имеет размерность n=dim . Таким образом, подход к определению Р. в случае неметризуемого пространства в принципе отличен от индуктивного подхода А. Пуанкаре, основанного на разбиении пространства подпространствами меньшего числа измерений. Бикомпакты имеют непосредственное отношение к следующему утверждению: в любом n-мерном бикомпакте содержится n-мерное канторово многообразие. Подмножество n-мерного евклидова пространства Е п тогда и только тогда n-мерно, когда оно содержит внутренние относительно Е n точки. Компакт имеет размерность тогда и только тогда, когда он обладает отображением Р. нуль в Е п, и, таким образом, с точностью до нульмерных отображений n-мерные компакты не отличимы от ограниченных замкнутых, содержащих внутренние (относительно Е).точки подмножеств Е п. См. также Размерности теория. Лит.:[1] А л е к с а н д р о в П. С., П а с ы н к о в Б. А., Введение в теорию размерности, М., 1973; [2] Г у р е в и ч В., В о л м э н Г., Теория размерности, пер. с англ., М., 1948; [3] У р ы с о н П. С.., Труды по топологии и другим областям математики, т. 1-2, М.- Л., 1951. Б. А. Пасынков.

Орфографический словарь Лопатина:

орф.
размерность, -и

Физический энциклопедический словарь:

Единицы физической величины, выражение, показывающее, во сколько раз изменится единица данной величины при изменении единиц величин, принятых в данной системе за основные. Р. представляет собой одночлен, составленный из произведения обобщённых символов осн. единиц в различных (целых или дробных, положительных или отрицательных) степенях, к-рые наз. показателями Р. (подробнее (см. РАЗМЕРНОСТЕЙ АНАЛИЗ)).

Научно-технический словарь:

РАЗМЕРНОСТЬ, в математике — число, характеризующее протяженность предмета в каком-либо направлении. Если некоторая фигура обладает только длиной, ее называют одномерной; фигура, имеющая только площадь, двумерна, а имеющая объем — трехмерна. В более общем смысле размерность фигуры равняется числу координат, которые необходимы для определения всех точек этой фигуры. Например, на плоскости (двумерное пространство) для этого нужно две координаты (х, у). см. также СИСТЕМА КООРДИНАТ.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru