Определение слова «Пуассона Распределение»

Большая советская энциклопедия:

Пуассона распределение
Одно из важнейших распределений вероятностей случайных величин, принимающих целочисленные значения. Подчинённая П. р. случайная величина Х принимает лишь неотрицательные значения, причём Х = kc вероятностью
, k = 0, 1, 2,...
( — положительный параметр). Своё название «П. р.» получило по имени С. Д. Пуассона (1837). Математическое ожидание и дисперсия случайной величины, имеющей П. р. с параметром , равны . Если независимые случайные величины X1 и X2 имеют П. р. с параметрами 1 и 2, то их сумма X1 + X2 имеет П. р. с параметрами 1 + 2.
В теоретико-вероятностных моделях П. р. используется как аппроксимирующее и как точное распределение. Например, если при n независимых испытаниях события A1,..., An осуществляются с одной и той же малой вероятностью р, то вероятность одновременного осуществления каких-либо k событий (из общего числа n) приближённо выражается функцией pk (np) (математическое содержание этого утверждения при больших значениях n и 1/р формулируются Пуассона теоремой (См. Пуассона теорема)). В частности, такая модель хорошо описывает процесс радиоактивного распада и многие др. физические явления.
Как точное П. р. появляется в теории случайных процессов. Например, при расчёте нагрузки линий связи обычно предполагают, что количества вызовов, поступивших за непересекающиеся интервалы времени, суть независимые случайные величины, подчиняющиеся П. р. с параметрами, значения которых пропорциональны длинам соответствующих интервалов времени (см. Пуассоновский процесс).
В качестве оценки неизвестного параметра по n наблюдённым значениям независимых случайных величин X1,..., Xn используется их арифметическое среднее X = (X1 +... + Xn)/n, поскольку эта оценка лишена систсматической ошибки и её квадратичное отклонение минимально (см. Статистические оценки).
Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М. — Л., 1969; Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1, М., 1967.

Рис. к ст. Пуассона распределение.

Математическая энциклопедия:

Распределение вероятностей случайной величины X, принимающей целые неотрицательные значения k=0,1,2, . . ., с вероятностями где l>0 — параметр. Производящая функция и харак-теристич. функция П. р. определяются соответственно равенствами Математич. ожидание, дисперсия и все семиинварианты более высокого порядка равны К. Функция распределения П. р. в точках k=0,1,2, . . . выражается формулой где Sk+1(l) — значение в точке Кфункции гамма-распределения с параметром k+1 (или формулой F(k)=1-H2k+2(2l), где Н 2k+2(2l) — значение в точке 2lфункции " хи-квадрат" распределения с 2k+2 степенями свободы), откуда, в частности, следует соотношение Сумма независимых случайных величин X1,. . ., Xn имеющих П. р. с параметрами ll ,. . ., ln подчиняется П. р. с параметром l1+...+l п. Обратно, если сумма Х 1+Х 2 двух независимых случайных величин X1 и Х 2 имеет П. р., то каждая случайная величина Х 1 и Х 2 подчинена П. р. Имеются общие необходимые и достаточные условия сходимости распределения сумм независимых случайных величин к П. р. При случайная величина имеет в пределе стандартное нормальное распределение. П. р. было впервые получено С. Пуассоном (S. Роisson, 1837) при выводе приближенной формулы для биномиального распределения в условиях, когда и (число испытаний) велико, а р(вероятность успеха) мало. См. Пуассона теорема2). П. р. с хорошим приближением описывает многие физич. явления (см. [2], т. I, гл. 6). П. р. является предельным для многих дискретных распределений, таких как, напр., гипергеометрическое распределение, отрицательное биномиальное распределение, Пойа распределение, для распределений, возникающих в задачах о размещении частиц по ячейкам при определенном изменении их параметров. В вероятностных моделях П. р. играет большую роль как точное распределение вероятностей. Природа П. р. как точного распределения вероятностей наиболее полно раскрывается в теории случайных процессов (см. Пуассоновский процесс), где П. р. появляется как распределение числа X(t).нек-рых случайных событий, происходящих в течение фиксированного интервала времени t: (параметр l, — среднее число событий в единицу времени), или, более общо, как распределение случайного числа точек в нек-рой фиксированной области евклидова пространства (параметр распределения пропорционален объему области). Наряду с П. р., как оно определено выше, рассматривают и так наз. обобщенное или сложное П. р. Так называют распределение вероятностей, суммы Xl+X2+...+Xv случайного числа v одинаково распределенных случайных величин Х 1, Х 2, . . . (при этом v, X1, Х 2, . . . считают взаимно независимыми, и v — распределенным по П. р. с параметром l). Характериcтич. функция j(t) обобщенного П. р. равна где y(t) — характеристич. функция Xv. Напр., отрицательное биномиальное распределение с параметрами n и рявляется обобщенным П. р., так как для него можно положить Обобщенные П. р. безгранично делимы и каждое безгранично делимое распределение является пределом обобщенных П. р. (может быть "сдвинутых", т. е. с характеристич. функциями вида . Вместе с тем все безгранично делимые распределениятолько они) могут быть получены как пределы распределений сумм вида , где (Xn1, . . ., Xnkn).образуют схему серий независимых случайных величин с П. р., и А п- действительные числа. Лит.:[1] Poisson S. D., Recherches sur la probabilite des jugements en matlere crlmlnelle et en matiere civile, prfcedees des regies generates du calcul des probabilites, P., 1837; [2] Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1-2, М., 1967; [3] Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968; [4] Линник Ю. В., Островский И. В., Разложения случайных величин и векторов, М., 1972. А. В. Прохоров.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru