Определение слова «Неравенства»

Большая советская энциклопедия:

I
Неравенства (математические)
соотношения между числами или величинами, указывающие, какие из них больше других. Для обозначения Н. употребляется знак <, обращенный остриём к меньшему числу. Так, соотношения 2 > 1 и 1 < 2 выражают одно и то же, а именно: 2 больше 1, или 1 меньше 2. Иногда несколько Н. записываются вместе (например, а < b < с). Желая выразить, что из двух чисел а и b первое или больше второго, или равно ему, пишут: а b (или b а) и читают: «а больше или равно b» (или «b меньше или равно а») либо короче: «а не меньше b» (или «b не больше а»). Запись а b означает, что числа а и b не равны, но не указывает, какое из них больше. Все эти соотношения также называются Н.
Н. обладают многими свойствами, общими с равенствами. Так, Н. остаётся справедливым, если к обеим частям его прибавить (или от обеих частей отнять) одно и то же число. Точно так же можно умножать обе части Н. на одно и то же положительное число. Однако если обе части Н. умножить на отрицательное число, то смысл Н. изменится на обратный (т. е. знак > заменяется на <, а < на >). Из неравенства А < В и С < D следует А + С < В + D и А — D < В — С, т. е. одноимённые Н. (А <</b> В и С <</b> D) можно почленно складывать, а разноимённые Н. (А < В и D > С) — почленно вычитать. Если числа А, В, С и D положительны, то из неравенств А < В и С < D следует также AC < BD и A/D < В/С, т. е. одноимённые Н. (между положительными числами) можно почленно перемножать, а разноимённые — почленно делить.
Н., в которые входят величины, принимающие различные числовые значения, могут быть верны для одних значений этих величин и неверны для других. Так, неравенство x2 — 4x + 3 > 0 верно при х = 4 и неверно при х = 2. Для Н. этого типа возникает вопрос об их решении, т. е. об определении границ, в которых следует брать входящие в Н. величины для того, чтобы Н. были справедливы. Так, переписывая неравенство x2 — 4x + 3 > 0 в виде: (х — 1)(х — 3) > 0, замечают, что оно будет верно для всех х, удовлетворяющих одному из следующих неравенств: х < 1, х > 3, которые и являются решением данного Н.
Укажем несколько типов Н., выполняющихся тождественно в той или иной области изменения входящих в них переменных.
1) Неравенство для модулей. Для любых действительных или комплексных чисел a1, a2,..., an справедливо Н.
|a1 + a2 + … + anI Ia1| + Ia2I +... + Ian|.
2) Неравенство для средних. Наиболее известны Н., связывающие гармонические, геометрические, арифметические и квадратические средние:

3) Линейные неравенства. Рассматривается система Н. Вида
ai1x1 + ai2x2 +... + ainxn (bi i = 1, 2,..., m).
Совокупность решений этой системы Н. представляет собой некоторый выпуклый многогранник в n-мepном пространстве (x1, x2,..., xn); задача теории линейных Н. состоит в том, чтобы изучить свойства этого многогранника. Некоторые вопросы теории линейных Н. тесно связаны с теорией наилучших приближений (См. Наилучшее приближение), созданной П. Л. Чебышевым.
См. также Бесселя неравенство, Буняковского неравенство, Гельдера неравенство (См. Гёльдера неравенство), Коши неравенство, Минковского неравенство.
Н. имеют существенное значение для всех разделов математики. В теории чисел целый раздел этой дисциплины — Диофантовы приближения — полностью основан на Н.; аналитическая теория чисел тоже часто оперирует с Н. В алгебре даётся аксиоматическое обоснование Н.; линейные Н. играют большую роль в теории линейного программирования (См. Линейное программирование). В геометрии Н. постоянно встречаются в теории выпуклых тел (См. Выпуклое тело) и в изопериметрических задачах (См. Изопериметрические задачи). В теории вероятностей многие законы формулируются с помощью Н. (см., например, Чебышева неравенство). В теории дифференциальных уравнений используются так называемые дифференциальные Н. (см., например, Чаплыгина метод). В теории функций постоянно употребляются различные Н. для производных от многочленов и тригонометрических полиномов. В функциональном анализе при определении нормы в функциональном пространстве требуется, чтобы она удовлетворяла Н. треугольника
||х + у|| ||x|| + ||y||.
Многие классические Н. в сущности определяют значения нормы линейного функционала или линейного оператора в том или ином пространстве или дают оценки для них.
Лит.: Коровкин П. П., Неравенства, 3 изд., М., 1966; Харди Г. Г., Литтльвуд Дж. Е., Полиа Г., Неравенства, пер. с англ., М., 1948.
II
Неравенства
в астрономии, то же, что Возмущения небесных тел.

Энциклопедический словарь Брокгауза и Ефрона:

(астр.) — уклонения в движении небесных светил от простых законов эллиптического движения; их разделяют на периодические, правильно повторяющиеся после небольшого промежутка времени, и вековые, полный цикл которых обнимает сотни и тысячи лет; по всей вероятности, вековые Н. суть тоже периодические. Почти все Н. весьма удовлетворительно объясняются законами всеобщего тяготения. Главные неравенства в движении Луны имеют особые названия: эвекция, вариация и годичное уравнение.
В. В. В.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru