Определение слова «молекула»

Толковый словарь Ефремовой:

молекула ж.
Частица вещества, обладающая всеми его химическими свойствами.

Толковый словарь Ушакова:

МОЛЕ́КУЛА, молекулы, ·жен. (от ·лат. moles — масса) (·ест. ). Мельчайшая частица вещества, способная существовать самостоятельно и обладающая всеми свойствами данного вещества. Молекулы состоят из атомов.

Большая советская энциклопедия:

Молекула
(новолат. molecula, уменьшительное от лат. moles — масса)
наименьшая частица вещества, обладающая его химическими свойствами. М. состоит из атомов, точнее — из атомных ядер, окружающих их внутренних электронов и внешних валентных электронов, образующих химические связи (см. Валентность). Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул данного вещества не зависят от способа его получения. В случае одноатомных молекул (например, инертных газов) понятия М. и атома совпадают.
Впервые понятие о М. было введено в химии в связи с необходимостью отличать М. как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав М. (Международный конгресс в Карлсруэ, 1860). Основные закономерности строения М. были установлены в результате исследования химических реакций, анализа и синтеза химических соединений, а также благодаря применению ряда физических методов.
Атомы объединяются в М. в большинстве случаев химическими связями. Как правило, такая связь создаётся одной, двумя или тремя парами электронов, которыми владеют сообща два атома. М. может содержать положительно и отрицательно заряженные атомы, т. е. ионы; в этом случае реализуются электростатические взаимодействия. Помимо указанных, в М. существуют и более слабые взаимодействия между атомами. Между валентно не связанными атомами действуют силы отталкивания.
Состав М. выражают формулами химическими (См. Формулы химические). Эмпирическая формула (например, С2Н6О для этилового спирта) устанавливается на основании атомного соотношения содержащихся в веществе элементов, определяемого химическим анализом, и молекулярной массы (См. Молекулярная масса).
Развитие учения о структуре молекул неразрывно связано с успехами прежде всего органической химии. Теория строения органических соединений, созданная в 60-х гг. 19 в. трудами А. М. Бутлерова, Ф. А. Кекуле, А. С. Купера и др., позволила представить строение молекул структурными формулами или формулами строения, выражающими последовательность валентных химических связей в М. При одной и той же эмпирической формуле могут существовать М. разного строения, обладающие различными свойствами (явление изомерии (См. Изомерия)). Таковы, например, этиловый спирт С5Н5ОН и диметиловый эфир (СН3)2О. Структурные формулы этих соединений разнятся:

В некоторых случаях изомерные М. быстро превращаются одна в другую и между ними устанавливается динамическое равновесие (см. Таутомерия). В дальнейшем Я. Х. Вант-Гофф и независимо французский химик А. Ж. Ле Бель пришли к пониманию пространственного расположения атомов в молекуле и к объяснению явления стереоизомерии. А. Вернер (1893) распространил общие идеи теории строения на неорганические комплексные соединения. К началу 20 в. химия располагала подробной теорией строения М., исходящей из изучения только их химических свойств. Замечательно, что прямые физические методы исследования, развитые позднее, в подавляющем большинстве случаев полностью подтвердили структурные формулы химии, установленные путём исследования макроскопических количеств вещества, а не отдельных М.
В физике понятие о М. оказалось необходимым для объяснения свойств газов, жидкостей и твёрдых тел. Прямое экспериментальное доказательство существования М. впервые было получено при изучении броуновского движения (французский физик Ж. Перрен, 1906).
В твёрдом теле М. могут сохранять или не сохранять свою индивидуальность. Так, большинство М. органических соединений образует Молекулярные кристаллы, в узлах решёток которых находятся М., связанные одна с другой относительно слабыми силами межмолекулярного взаимодействия. Напротив, в ионных (например, в случае NaCI) и атомных (алмаз) кристаллах нет отдельных М. и весь кристалл подобен одной М. (см. Кристаллохимия). Структура М. может изменяться при переходе от кристалла к газу. Так, N2O5 в газе состоит из единых М., в кристалле — из ионов NO2+ и NO3- ; газообразный PCI5 — из М. с конфигурацией тригональной бипирамиды, твёрдый — из октаэдрического иона PCl6- и тетраэдрического иона PCl4+.
Равновесные межъядерные расстояния r0 и энергии диссоциации D (при 25°С) некоторых двухатомных молекул
------------------------------------------------------------------------------------------------------------------------------------------------------
| Молекула        | r0,                  | D, кдж/моль (      | Молекула     | r0,               | D,Кдж/моль (    |
|                       |                       | ккал/моль)          |                     |                      | ккал/моль)        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| H2                   | 0,74                | 426,5 (104,18)      | Br2               | 2,14              | 192,7 (46)          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Li2                   | 2,67                | 104,7 (25)            | I2                  | 2,67              | 147,1 (35,1)       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| N2                   | 1,09                | 94,3 (22,5)           | LiH               | 1,59              | 243 (58)             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| O2                   | 1,21                | 495,7 (118,3)       | NaH              | 1,89              | 196,9 (47)          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| F2                   | 1,48                | 155 (37)               | HhF              | 0,92              | 565,6 (135)        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Na2                 | 3,08                | 78,5 (17,3)           | HCl               | 1,27              | 431,6 (103)        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Cl2                  | 1,99                | 242,6 (57,9)         | HI                 | 1,60              | 264 (63)             |
------------------------------------------------------------------------------------------------------------------------------------------------------
Строение молекул. Геометрическая структура М. определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю; если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи); при дальнейшем сближении атомов действуют электростатические силы отталкивания атомных ядер; препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек. На рис. 1 показана зависимость потенциальной энергии двухатомной М. от межъядерного расстояния r. Эта энергия минимальна при равновесном расстоянии r0, стремится к нулю при r и возрастает до при r 0. Разность энергий при r = r0 и r характеризует энергию связи, энергию диссоциации D. Равновесные расстояния r0 в двухатомных и многоатомных М. и, следовательно, расположение атомных ядер в М. определяются методами спектроскопии, рентгеновского структурного анализа (См. Рентгеновский структурный анализ) и электронографии (См. Электронография), а также нейтронографии (См. Нейтронография), позволяющими получить сведения и о распределении электронов (электронной плотности) в М. Рентгенографическое изучение молекулярных кристаллов даёт возможность установить геометрическое строение очень сложных М., вплоть до М. белков. Косвенную, но весьма детальную информацию о строении сложных М. получают различными спектроскопическими методами, в особенности с помощью спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс) (ЯМР). Геометрия простых М., содержащих малое число атомов, также эффективно исследуется методами спектроскопии. Расстояния (в ) между 2 данными валентно связанными атомами приблизительно постоянны в М. различных соединений, они уменьшаются с увеличением кратности связи:
----------------------------------------------------------------------------------------------------
| C—C…………….     | 1,54         | C—F……………..    | 1,39          |
|---------------------------------------------------------------------------------------------------|
| C=C……………...    | 1,34         | C—Cl…………….    | 1,77          |
|---------------------------------------------------------------------------------------------------|
| C- - -C (в                 | 1,39         | C—Br…………….    | 1,92          |
| бензоле)...              |                |                               |                 |
|---------------------------------------------------------------------------------------------------|
| CC……………...    | 1,2           | C—I………………    | 2,1            |
|---------------------------------------------------------------------------------------------------|
| C—H……………..    | 1,09         | C—S……………..    | 1,82          |
|---------------------------------------------------------------------------------------------------|
| C—O……………..    | 1,42         | O—H…………….     | 0,96          |
|---------------------------------------------------------------------------------------------------|
| C=O……………...    | 1,21         | N—H……………..    | 1,01          |
|---------------------------------------------------------------------------------------------------|
| C—N……………..    | 1,46         | S—H……………..    | 1,35          |
----------------------------------------------------------------------------------------------------
Можно приписать каждому атому в данном валентном состоянии в М определённый атомный, или ковалентный, радиус (в случае ионной связи — ионный радиус, см. Атомные радиусы, Ионные радиусы), характеризующий размеры электронной оболочки атома (иона), образующего химическую связь в М. Представление о приблизительном постоянстве этих радиусов оказывается полезным при оценке межатомных расстояний и, следовательно, при расшифровке структуры М. Длина связи представляет собой сумму соответствующих атомных радиусов.
Размер М. как целого, т. с. размер её электронной оболочки, есть величина до некоторой степени условная — имеется отличная от нуля, хотя и весьма малая, вероятность найти электроны М. и на большом расстоянии от её атомных ядер. Практически размеры М. определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке М. в молекулярном кристалле и в жидкости. На больших расстояниях М. притягиваются одна к другой, на меньших — отталкиваются. Размеры М. поэтому можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов, порядок величины этих размеров может быть определён из коэффициентов диффузии, теплопроводности и вязкости газов и из плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы, принадлежащие одной и той же М. или различным М., может быть охарактеризовано средними значениями т. н. ван-дер-ваальсовых радиусов (в ):
--------------------------------------------------------------
| H……...    | 1,0-1,2   | S………   | 1,9    |
|------------------------------------------------------------|
| C……...    | 1,75-2,0  | Se……..  | 1,0    |
|------------------------------------------------------------|
| N……...    | 1,5         | Te……..   | 2,2    |
|------------------------------------------------------------|
| P………   | 1,9         | F………    | 1,4    |
|------------------------------------------------------------|
| As……..   | 2,0         | Cl……...   | 1,8    |
|------------------------------------------------------------|
| Sb……..   | 2,2         | Br……...   | 2,0    |
|------------------------------------------------------------|
| O………   | 1,4         | I……….    | 2,2    |
--------------------------------------------------------------
Ван-дер-ваальсовы радиусы существенно превышают ковалентные. Зная величины ван-дер-ваальсовых, ковалентных, а также ионных радиусов, можно построить наглядные модели М., отражающие форму и размеры их электронных оболочек (рис. 2).
Ковалентные химические связи в М. расположены под определёнными углами, зависящими от состояния гибридизации атомных орбиталей (см. Валентность). Так, для М. насыщенных органических соединений характерно тетраэдрическое расположение связей, образуемых атомом углерода; для М. с двойной связью (С=С) — плоское расположение связей атомов углерода; в М. соединений с тройной связью (СС) — линейное расположение связей:

Таким образом, многоатомная М. обладает определённой конфигурацией в пространстве, т. е. определённой геометрией расположения связей, которая не может быть изменена без их разрыва. М. характеризуется той или иной симметрией расположения атомов. Если М. не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, представляющих зеркальные отражения одна другой (зеркальные антиподы, или стереоизомеры, см. Изомерия). Все важнейшие биологически функциональные вещества в живой природе фигурируют в форме одного определённого стерсоизомера.
М., содержащие единичные связи, или сигма-связи, могут существовать в различных Конформациях, возникающих при поворотах атомных групп вокруг единичных связей. Важные особенности макромолекул синтетических и биологических полимеров определяются именно их конформационными свойствами.
Взаимодействие атомов в молекуле. Природа химических связей в М. оставалась загадочной вплоть до создания квантовой механики — классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были созданы В. Гейтлером и немецким учёным Ф. Лондоном в 1927 на примере простейшей молекулы Н2. В дальнейшем теория и методы расчёта были значительно усовершенствованы, в частности на основе широкого применения Молекулярных орбиталей метода, и Квантовая химия позволяет вычислять межатомные расстояния, энергии М., энергии химических связей и распределение электронной плотности для сложных М.; при этом расчётные данные хорошо согласуются с экспериментальными.
Химические связи в М. подавляющего числа органических соединений являются ковалентными. Напротив, в ряде неорганических соединений существуют ионные, а также донорно-акцепторные связи (см. Химическая связь), реализуемые в результате обобществления неподелённой пары электронов данного атома. Энергия образования М. из атомов во многих рядах сходных соединений приближённо аддитивна. Иными словами, в этих случаях можно считать, что энергия М. есть сумма энергии её связей, имеющих постоянные значения в рассматриваемом ряду. Отсюда следует практическая возможность приписать химическим связям приближённо автономные электронные оболочки.
Аддитивность энергии М. выполняется не всегда. Яркий пример нарушения аддитивности представляют плоские М. органических соединений с т. н. сопряжёнными связями, т. е. с кратными связями, чередующимися с единичными. В этих случаях валентные электроны, определяющие кратность связей, т. н. -электроны, становятся общими для всей системы сопряжённых связей, делокализованными. Такая делокализация электронов приводит к дополнительной стабилизации М. Например, энергия образования М. 1,3-бутадиена Н2С=CH—CH=CH2 больше ожидаемой по аддитивности на 16,8 кдж/моль (на 4 ккал/моль). Выравнивание электронной плотности вследствие обобществления -электронов по связям выражается в удлинении двойных связей и укорочении единичных. В правильном шестиугольнике межуглеродных связей и бензола (см. формулу) все связи одинаковы и имеют длину, промежуточную между длиной единичной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах (см. ниже).

Современная квантовомеханическая теория химической связи учитывает частичную делокализацию не только -, но и -электронов, наблюдающуюся в любых молекулах. Вообще говоря, это не нарушает аддитивности энергий молекул.
В подавляющем большинстве случаев суммарный спин валентных электронов в М. равен нулю, т. е. спины электронов попарно насыщены. М., содержащие неспаренные электроны — Радикалы свободные (например, атомный водород Н·, метил CH·3), обычно неустойчивы, т. к. при их соединении друг с другом происходит значительное понижение энергии вследствие образования валентных связей. Наиболее эффективным методом изучения строения свободных радикалов является Электронный парамагнитный резонанс (ЭПР).
Электрические и оптические свойства молекул. Поведение вещества в электрическом поле определяется основными электрическими характеристиками М. — постоянным дипольным моментом (См. Дипольный момент) и поляризуемостью. Дипольный момент означает несовпадение центров тяжести положительных и отрицательных зарядов в М., т. е. электрическую асимметрию М. Соответственно М., имеющие центр симметрии, например H2, лишены постоянного дипольного момента; напротив, в HCl электроны смещены к атому Cl и дипольный момент равен 1,03 D (1,0310-18 ед. СГС). Поляризуемостью характеризуется способность электронной оболочки любой М. смещаться под действием электрического поля, в результате чего в М. создаётся индуцированный дипольный момент. Значения дипольного момента и поляризуемости находят экспериментально с помощью измерений диэлектрической проницаемости (См. Диэлектрическая проницаемость). В случае аддитивности свойств М. дипольный момент М. может быть представлен суммой дипольных моментов связей (с учётом их направления), то же относится к поляризуемости М.
Оптические свойства вещества характеризуют его поведение в переменном электрическом поле световой волны — тем самым они определяются поляризуемостью М. вещества. С поляризуемостью непосредственно связаны преломление и рассеяние света, Оптическая активность и другие явления, изучаемые молекулярной оптикой (См. Молекулярная оптика) — разделом физической оптики, посвященным изучению оптических свойств вещества.
Магнитные свойства молекул. М. и макромолекулы подавляющего большинства химыических соединений диамагнитны (см. Диамагнетизм). Магнитная восприимчивость М. () в ряде органических соединений может быть выражена как сумма значений для отдельных связей; однако аддитивность выполняется хуже, чем аддитивность поляризуемостей . И , и определяются свойствами внешних электронов М.; эти две величины связаны одна с другой.
Парамагнитны М., обладающие постоянным магнитным моментом (см. Парамагнетизм). Таковы М. с нечётным числом электронов во внешней оболочке (например, NO и любые свободные радикалы), М., содержащие атомы с незамкнутыми (незаполненными) внутренними оболочками (переходные металлы и др.). Магнитная восприимчивость парамагнитных веществ зависит от температуры, т. к. тепловое движение препятствует ориентации магнитных моментов в магнитном поле. Строение парамагнитных М. эффективно изучается методом ЭПР.
Атомные ядра элементов, у которых атомный номер или массовое число нечётны, обладают ядерным спиновым парамагнетизмом. Для таких ядер характерен ядерный магнитный резонанс (ЯМР), спектр которого зависит от электронного окружения ядер в М. Поэтому спектры ЯМР служат источником очень подробной информации о строении М., в том числе и весьма сложных, например белков (см. также Ядерный квадрупольный резонанс, Магнетизм, Магнетохимия).
Спектры и строение молекул. Электрические, оптические, магнитные и другие свойства М. в конечном счёте связаны с волновыми функциями (См. Волновая функция) и энергиями различных состояний М.; через них выражаются и электрический дипольный момент, и магнитный момент, и поляризуемость, и магнитная восприимчивость. Прямую информацию о состояниях М. и вероятностях перехода между ними дают Молекулярные спектры.
Частоты в спектрах, соответствующих вращательным переходам, зависят от моментов инерции М., определение которых из спектроскопических данных позволяет получить наиболее точные значения межатомных расстояний в М.
Общее число линий или полос в колебательном спектре М. зависит от её симметрии. Частоты колебаний, наблюдаемые в спектрах, определяются, с одной стороны, массами атомов и их расположением, с другой — динамикой межатомных взаимодействий. Теория колебаний многоатомных М. соответственно опирается на теорию химического строения и классическую механику связанных колебаний. Исследование колебательных спектров позволяет сделать ряд выводов о строении М., о межатомных и межмолекулярных взаимодействиях, изучать явления таутомерии, поворотной изомерии.
Электронные переходы в М. характеризуют структуру их электронных оболочек, состояние химических связей. Спектры М., обладающих большим числом сопряжённых связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, построенные из таких М., обладают цветностью, к ним относятся все органические красители. Изучение электронно-колебательных спектров М. необходимо для понимания естественной и магнитной оптической активности.
Молекулы в химии, физике и биологии. Понятие о М. — основное для химии, и большей частью сведений о строении и функциональности М. наука обязана химическим исследованиям. При химической реакции происходит превращение одних М. в другие. Для такого превращения обычно необходима некоторая избыточная энергия М. — энергия активации (см. Кинетика химическая). В акте химического взаимодействия М. проходят через конфигурацию т. н. активированного комплекса, или переходного состояния М. Характер и скорость химической реакции определяются этим состоянием, в свою очередь зависящим от строения взаимодействующих М. Химия решает две главные задачи, относящиеся к М., — устанавливает строение М. на основании химических реакций и, наоборот, на основе строения М. определяет ход реакций. Широкая совокупность важнейших проблем современной химии, в том числе и нерешённых, сводится к теории химической реакционной способности. Исследование этих проблем требует применения как теоретических методов квантовой химии, так и экспериментальных данных, получаемых химическими и физическими методами.
Физические явления, определяемые строением и свойствами М., изучаются молекулярной физикой (См. Молекулярная физика). Термодинамические свойства любого вещества, построенного из М., в конечном счёте выражаются через значения энергий всех возможных состояний М., находимых из спектроскопических данных. Строение М. и межмолекулярные взаимодействия ответственны за равновесные свойства вещества. То же относится к неравновесным, кинетическим, свойствам. Установление равновесия требует некоторого временивремени релаксации (См. Релаксация). При быстрых изменениях состояния вещества равновесие может не успеть установиться. Эти явления наблюдаются, например, при прохождении ультразвука через вещество и сказываются на поглощении и дисперсии звуковых волн (см. Молекулярная акустика). Равновесие устанавливается в результате взаимодействия М. при их соударениях в газе и жидкости, в результате поглощения и излучения света и т. д. Время релаксации М. в конденсированной среде существенно зависит от температуры, с ростом которой увеличивается подвижность М. В ряде случаев М. в жидкости практически утрачивают свою подвижность ещё до кристаллизации: происходит стеклование вещества. Подвижностью М. определяются способность веществ к диффузии (См. Диффузия), их Вязкость, Теплопроводность и т. д. Непосредственное изучение подвижности М., определение времён релаксации проводятся методами поглощения и дисперсии электромагнитных волн, ЯМР, ЭПР и другими способами.
Равновесные и кинетические свойства больших цепных М., образующих полимеры (см. Макромолекула), специфичны. Особенности поведения макромолекул определяются прежде всего их гибкостью — способностью находиться в большом числе различных конформаций, возникающих в результате поворотов вокруг единичных связей.
Развитие биологии, химии и молекулярной физики привело к построению молекулярной биологии (См. Молекулярная биология), исследующей основные явления жизни, исходя из строения и свойств биологически функциональных М. Организм существует на основе тонко сбалансированных химических и нехимических взаимодействий между М. Таким образом, изучение строения и свойств М. имеет фундаментальное значение для естествознания в целом.
Лит.: Сыркин Я. К., Дяткина М. Е., Химическая связь и строение молекул, М. — Л., 1946; Паулинг Л., Природа химической связи, пер. с англ., М. — Л., 1947; Волькенштейн М. В., Строение и физические свойства молекул, М. — Л., 1955; его же, Молекулы и жизнь, М., 1965; его же, Перекрёстки науки, М., 1972; Кондратьев В. Н., Структура атомов и молекул, 2 изд., М., 1959; Козман У., Введение в квантовую химию, пер. с англ., М., 1960; Слэтер Дж., Электронная структура молекул, пер. с англ., М., 1965.
М. В. Волькенштейн.

Рис. 1. Зависимость потенциальной энергии U двухатомной молекулы (или отдельной химической связи) от межатомного расстояния r (r0 — равновесное расстояние, D — энергия диссоциации, 0, 1, 2, ... — уровни энергии колебаний).

Рис. 2. Модели структур некоторых простых молекул (радиусы сфер — ван-дер-ваальсовы).

Большой словарь иностранных слов:

Молекулы, ж. [от латин. moles – масса] (ест.). Мельчайшая частица вещества, способная существовать самостоятельно и обладающая всеми свойствами данного вещества. Молекулы состоят из атомов.

Толковый словарь Кузнецова:

молекула
МОЛЕКУЛА -ы; ж. [франц. molcule из лат.] Наименьшая частица вещества, обладающая всеми его химическими свойствами. Образование молекул воды. Водородные связи между молекулами метанола.
Молекулярный, -ая, -ое. М-ая теория. М-ое движение. М-ая масса. М. состав вещества.

Малый академический словарь:

молекула
-ы, ж.
Наименьшая частица вещества, обладающая всеми его химическими свойствами.
[франц. molcule из лат.]

Орфографический словарь Лопатина:

орф.
молекула, -ы

Толковый словарь Ожегова:

МОЛЕКУЛА, ы, ж. Мельчайшая частица вещества, обладающая всеми его химическими свойствами. м. состоит из атомов.
| прил. молекулярный, ая, ое. Молекулярная масса.

Физический энциклопедический словарь:

(новолат. molecule, уменьшит. от лат. moles — масса), наименьшая ч-ца в-ва, обладающая его осн. хим. св-вами и состоящая из атомов, соединённых между собой химическими связями. Число атомов в М. составляет от двух (Н2, О2, HF, KCl) до сотен и тысяч (нек-рые витамины, гормоны и белки). Атомы инертных газов часто называют одноатомными М., хотя, строго говоря, они не явл. М. Если М. состоит из тысяч и более повторяющихся единиц (одинаковых или близких по строению групп атомов), то её называют макромолекулой. В физике представление о М. возникло в 18 в. и получило широкое признание в 19 в. в связи с развитием термодинамики и теории газов и жидкостей. Во 2-й половине 19 в. с помощью разл. хим. методов были получены мн. важные сведения о строении М. Окончательно существование М. было подтверждено опытами франц. физика Ж. Б. Перрена по изучению броуновского движения (1906).
Атомы в М. связаны между собой в определ. последовательности и определ. образом расположены в пр-ве. Наиб. общие хар-ки М.— мол. масса, состав и структурная ф-ла, указывающая последовательность хим. связей (напр., мол. масса М. воды 18, равная сумме масс входящих в неё атомов в атомных единицах массы, состав Н2О, структурная ф-ла Н—О—Н). Прочность межатомной связи характеризуется энергией хим. связи, к-рая составляет обычно неск. десятков кДж/моль. Атомы в М. непрерывно совершают колебат. движения; при определ. условиях, напр. в газовой фазе, М. могут совершать поступат. и вращат. движения. М., как и атомы, не имеют чётких границ. Размеры М. можно ориентировочно оценить, зная плотность в-ва, мол. м. и число Авогадро. Так, если допустить, что М. Н2O имеет сферич. форму, то диаметр её окажется равным =3•10-8 см (0,3 нм). Размеры М. растут с увеличением числа атомов в них и лежат в пределах 10-8—10-5 см. М. нельзя увидеть невооружённым глазом или с помощью оптич. микроскопа, однако существование М. доказывают мн. явления (броуновское движение, диффузия, дифракция рентг. лучей, эл-нов, нейтронов и т. д.).
Устойчивость М. в среде зависит от её вз-ствия с др. атомами, а также от темп-ры, давления и др. внеш. факторов. В газообразном состоянии в-во, как правило, состоит из М. (кроме инертных газов, паров металлов). При достаточно высоких темп-pax М. всех газов распадаются на атомы. В конденсированных системах М. могут сохраняться. Вода во всех агрегатных состояниях состоит из М.; из М. построены большинство жидкостей и молекулярные кристаллы. В металлах и др. ат. кристаллах, а также их расплавах М., как правило, не существуют, т. к. в них каждый атом взаимодействует со всеми соседними приблизительно одинаково.
Химическая связь.
Возможность образования М. объясняется тем, что внутр. энергия М. как системы атомов ниже суммарной энергии этих атомов в изолиров. состоянии. Соответствующая разность энергии наз. энергией образования М. из атомов (или энергией атомизации), к-рая приближённо равна сумме энергий хим. связей.
Для хим. связи существ. значение имеют лишь эл.-магн. вз-ствия эл-нов и ядер входящих в М. атомов. Наиболее часто встречаются М., в к-рых существуют ковалентные и ионные хим. связи.
К о в а л е н т н а я с в я з ь возникает при обобществлении эл-нов (обычно электронных пар) двумя соседними атомами (т. е. за счёт обмена эл-нами). Хим. связь такого типа осуществляется в М. Н2, O2, СО и др. При сближении атомов ковалентная связь образуется только в том случае, когда спины их внеш. эл-нов антипараллельны. При этом происходит деформация электронных оболочек атомов, их перекрытие по линии, соединяющей ядра. При нек-ром межъядерном расстоянии силы притяжения уравновешиваются силами отталкивания и образуется устойчивая система, внутр. энергия к-рой минимальна.
Ионная связь осуществляется электростатич. вз-ствием атомов при переходе эл-на одного из них к другому, т. е. при образовании положит. и отрицат. иона. Такая связь характерна для М. NaCl, KI и др. Ковалентные и ионные хим. связи явл. предельными; как правило, образуются смешанные хим. связи — частично ковалентные, частично ионные.
Внутренняя энергия и уровни энергии молекул.
Внутр. энергия М.— осн. хар-ка, определяющая её состояние и св-ва и зависящая от взаимного расположения составляющих её ч-ц и их движения. М. явл. квант. системой, и её внутр. энергия ? может принимать лишь определ. значения, т. е. квантуется. Внутр. энергия М. приближённо равна сумме энергий электронных движений ?э, колебаний ядер ?к и вращения М. как целого ?в, т. е. ?»?э+?к+?в, причём ?э->?к->?в. Каждая из указанных энергий квантуется в соответствии с законами квантовой механики, и ей соответствует набор дискретных уровней энергии (электронные, колебат. и вращат. уровни энергии).
Состояние М. как квант. системы описывается Шредингера уравнением, к-рое учитывает электростатич. вз-ствия эл-нов с ядрами, эл-нов друг с другом, а также кинетич. энергию эл-нов и ядер. В адиабатическом приближении ур-ние Шредингера для М. распадается на два ур-ния — для эл-нов и для ядер. Решение (обычно приближённое) электронного ур-ния Шредингера — нахождение уровней энергии эл-нов — одна из осн. задач квантовой химии.
М.— электрически нейтральные системы, однако электронная плотность в них распределена неравномерно. Число электронных уровней в М. значительно больше числа уровней энергии составляющих М. атомов, поскольку каждый атом М. находится в электрич. поле остальных атомов, в результате чего уровни расщепляются на многочисл. подуровни (Штарка эффект).
Электронные уровни М. определяются совокупностью квантовых чисел, характеризующих состояния всех эл-нов М. Уровни, отвечающие значениям квант. числа L=0, 1, 2, ... полного орбит. момента М обозначаются соответственно S, П, D, ... (L представляет собой сумму орбитальных квант. чисел эл-нов; (см. АТОМ)). Квант. число S=0, 1, 2, ... определяет полный спиновый момент, внутр. квант. число W=Lr±S— полный момент М. Электронный уровень М. обозначают 2S+1LW, где слева вверху приводится мультиплетность уровня c=2S+1.
Ур-ние Шредингера для ядер содержит информацию о колебаниях М. и вращениях её как целого. Решение этого ур-ния для двухатомной М. приводит к дискретным колебат. уровням, отстоящим один от другого на hv, если колебания ядер считать гармоническими (v — собств. частота осциллятора), и на hv-2(v+1)hva — при ангармонич. колебаниях (v — колебательное квант. число, а — постоянная ангармоничности). Колебания реальных двухатомных М. ангармоничны, и расстояние между колебат. уровнями энергии убывают с ростом v, а макс. колебат. энергия равна энергии диссоциации М.
В многоатомной М. как связанной системе ч-ц колебания отд. атомов не независимы. Сложные колебания такой системы можно разделить на независимые гармонич. колебания, каждое из к-рых характеризуется определ. частотой; их называют н о р м а л ь н ы м и к о л е б а н и я м и.
Колебания многоатомных М. в принципе могут быть изучены теоретически с помощью методов квант. химии, однако на практике обычно пользуются механич. моделью, оперирующей силовыми постоянными разл. структурных элементов М.
Вращат. уровни двухатомной М. определяются выражением
?в= h2J(J+1)/8p2I,
где I — момент инерции М., относительно нек-рой оси вращения, J — вращат. квант. число.
Аналогичные ф-лы, выведенные для многоатомных М., позволяют определять их геометрию по наблюдаемым чисто вращат. спектрам. Выражение для ?в резко усложняется, если, помимо вращения М. как целого, имеет место внутр. вращение, приводящее к ротамерам (см. ниже). Однако ф-лы для ?в дают возможность на основании вращат. спектров оценивать барьеры внутр. вращения и др. хар-ки М. Наряду с чисто электронными, колебат. и вращат. уровнями энергии в спектрах проявляются уровни, обусловленные электронно-колебат. и колебательно-вращат. вз-ствиями.
Спектры излучения, поглощения, комбинац. рассеяния света возникают при переходах М. с одного уровня энергии на другой; при этом М. поглощает или излучает энергию, равную разности энергий этих уровней. Соответственно возникают электронные, колебат. и вращат. спектры М. (подробнее (см. МОЛЕКУЛЯРНЫЕ СПЕКТРЫ)).
Структура молекулы. Геометрию М. можно описать декартовыми координатами атомов, однако чаще всего её характеризуют набором внутр. параметров — д л и н с в я з е й, в а л е н т н ы х и д в у г р а н н ы х у г л о в. Длиной связи наз. расстояние между ядрами атомов, соединённых между собой хим. связью. Обычно, чем больше длина связи, тем меньше её прочность.
Трёхмерные модели молекул: слева — шаро-игловая модель: атомы изображены белыми шарами, валентные связи — выходящими из них стержнями; справа — объёмная модель Стюарта—Бриглеба: атомы представлены шарами, радиусы к-рых пропорц. ван-дер-ваальсовым радиусам.
Валентным наз. угол между двумя хим. связями, выходящими из одного атома. Торсионные углы — это углы вращения вокруг связей. Так, в М. перекиси водорода, Н—О—О — Н, длины связей О—О и О—Н равны соотв. 0,147 и 0,095 нм, валентный угол Н—О—О равен 95° и торсионный угол (угол вращения вокруг связи О—О, или двугранный угол между плоскостями Н—О—О и О—О—Н) равен 112°.
Каждое электронное состояние характеризуется равновесной геометрией (равновесной конфигурацией), отвечающей мин. энергии. В обычных условиях М. находится в основном электронном состоянии (на ниж. электронном уровне), и термин «равновесная конфигурация» часто относят только к этому состоянию. Так, приведённые выше внутр. геом, параметры М. Н—О — О — Н явл. равновесными, тогда как, напр., плоские формы этой М. (торсионный угол равен 0 или 180°) неравновесны. Зависимость внутр. энергии М. от геом. параметров для многоатомных М. может быть представлена многомерной поверхностью, наз. потенциальной поверхностью. Самый глубокий минимум потенц. энергии М. соответствует её равновесной конфигурации, метастабильным состояниям отвечают менее глубокие минимумы. Определение потенц. поверхности М. или хотя бы выявление нек-рых её особенностей явл. целью разл. эксперим. и теоретич. исследований.
Расположение атомов в М. всегда обладает определённой симметрией (см. СИММЕТРИЯ МОЛЕКУЛЫ). Потенц. поверхность М. также обладает симметрией, что проявляется, напр., в инфракрасных спектрах М. или спектрах комбинационного рассеяния света.
Нек-рые одинаковые по составу М. могут отличаться строением или расположением атомов. Такие формы существования в-ва наз. изомерами (см. ИЗОМЕРИЯ МОЛЕКУЛ). Структурные изомеры имеют разную последовательность хим. связей, и их М. изображаются разными структурными ф-лами (напр., нормальный бутан Н3С—СН2—СН2—СН3 и изобутан
Структурные изомеры — это разные М., а соответствующие соединения обладают разными физ. и хим. св-вами. Так, темп-ра кипения нормального бутана равна +0,6 °С, а изобутана -11,7 °С.
Поворотные изомеры (р о т а м е р ы, к о н ф о р м е р ы) возникают при вращении атомов или ат. групп вокруг хим. связей и отвечают разным минимумам потенц. поверхности М. Они представляют собой разл. состояния одной и той же М. Энергетич. барьеры, разделяющие поворотные изомеры, не превышают 100 кДж/моль, а время жизни этих изомеров обычно =10-10—10-13 с. При более высоких энергетич. барьерах (напр., при геом. изомерии М.) время жизни изомеров возрастает и появляется возможность их разделения.
М. оптических изомеров энантиоморфны — зеркально симметричные одна по отношению к другой. Такие изомеры вращают плоскость поляризации света в противоположные стороны; остальные же физ. св-ва у них совершенно одинаковы (см. ОПТИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА).
Свойства молекул. Исследование молекул.
Хим. и большинство физ. св-в М. определяются их внеш. эл-нами. Так, внеш. эл-ны определяют оптич. спектры М. В спектрах М. проявляются мн. особенности их строения (симметрия, изомерия, природа хим. связи и т. д.). Индивидуальность спектров соединений, характеристичность частот колебаний определ. групп атомов в М. позволяют производить качеств. и количеств. спектральный анализ в-ва. Электронные уровни энергии изучают методами ультрафиолетовой спектроскопии, фотоэлектронной спектроскопии, рентгеноэлектронной спектроскопии. Колебат. уровни энергии проявляются в ИК спектрах и спектрах комбинац. рассеяния света. Частоты вращат. линий лежат в радиодиапазоне (см. МИКРОВОЛНОВАЯ СПЕКТРОСКОПИЯ), а также в дальней ИК области спектра.
Во внеш. электрич. поле М. поляризуется — приобретает индуциров. дипольный момент (см. ПОЛЯРИЗУЕМОСТЬ АТОМОВ, ИОНОВ, МОЛЕКУЛ). Поляризация в-в из полярных М. (т. е. М., обладающих пост. дипольными моментами) во внеш. электрич. поле обусловлена как их ориентацией вдоль поля, так и возникновением индуциров. дипольных моментов за счёт электронной поляризуемости. Измерение диэлектрич. проницаемости и поляризации в-ва даёт возможность приблизительно оценивать поляризуемость и величину пост. дипольных моментов отд. М., что позволяет делать выводы о её строении — симметрии, распределении электронной плотности, присутствии тех или иных групп атомов и их расположении и т. д.
Магн. св-ва М. дают важные сведения о строении электронной оболочки. Большинство М. диамагнитны, т. е. не имеют пост. магн. момента. Поведение таких М. в магн. поле определяется их отрицат. магнитной восприимчивостью. Парамагн. М., обладающие пост. магн. моментом, во внеш. магн. поле стремятся ориентироваться в направлении поля. Пост. магн. моментом (связанным со спином эл-нов, а также с их орбит. движением) могут обладать как электронная оболочка, так и ат. ядра. Парамагнитные (обладающие неспаренным эл-ном) М. исследуют с помощью электронного парамагнитного резонанса. В спектрах ядерного магнитного резонанса проявляются вз-ствия спиновых моментов ат. ядер, зависящие от электронной структуры М. и окружения каждого атома. На основании спектров ЯМР судят о направлении хим. связей, различных проявлениях изомерии М., взаимном расположении атомов в М., о динамике атомов в М. и т. д.
Важный метод изучения М.— массспектроскопия. Масс-спектрометрич. измерения основаны на расщеплении М. на электрически заряж. фрагменты (радикалы) и определении масс этих фрагментов. Геометрию М. в кристаллах определяют с помощью дифракции рентг. лучей (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ) и нейтронов (см. НЕЙТРОНОГРАФИЯ). В газовой фазе и парах геометрию М. исследуют с помощью дифракции эл-нов (см. ЭЛЕКТРОНОГРАФИЯ) и микроволновых спектров. Эти исследования дают точность в определении координат атомов (ядер) порядка 0,001 нм; отсюда точность в определении длин связей =0,001 нм и в определении валентных и двугранных углов — 1—2°. Помимо дифракц. и спектроскопич. методов, существует ещё ряд методов исследования структурных, динамич. и термодинамич. хар-к М. Так, термодинамич. методы (в частности, калориметрия) позволяют определять разность энтальпий разл. изомеров, поглощение УЗ используется для установления равновесного содержания изомеров в жидкостях и р-рах и т. д.

Научно-технический словарь:

МОЛЕКУЛА, мельчайшая частица вещества (например, химического соединения), определяющая химические свойства этого вещества. Молекула может состоять из одного атома, но обычно состоит из двух или более атомов, удерживаемых вместе ХИМИЧЕСКИМИ связями. Например, молекулы воды состоят из двух атомов водорода, присоединенных к одному атому кислорода (Н2О). Молекулаотличие от иона) не имеет электрического заряда. см. также МАКРОМОЛЕКУЛА.

Грамматический словарь Зализняка:

Молекула, молекулы, молекулы, молекул, молекуле, молекулам, молекулу, молекулы, молекулой, молекулою, молекулами, молекуле, молекулах

Энциклопедический словарь Брокгауза и Ефрона:

Или частица — система или группа атомов; см. Вещество и др.; см. также Частица. Молекулярные, или частичные, силы и явления — см. также Частица, Сродство химическое и др.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru