Определение слова «МНОГООБРАЗИЕ»

Толковый словарь Ефремовой:

многообразие ср.
1. Проявление чего-либо в различных видах и формах.
|| Различие видов и форм существования, проявления чего-либо.
2. Разнообразие, обилие чего-либо различного.

Толковый словарь Ушакова:

МНОГООБРА́ЗИЕ, многообразия, мн. нет, ср. (·книж. ). Множественность проявлений чего-нибудь, форм обнаружения чего-нибудь. Многообразие форм в природе. Многообразие явлений.

Большой энциклопедический словарь:

МНОГООБРАЗИЕ — математическое понятие, уточняющее и обобщающее на любое число измерений понятия линии и поверхности, не содержащих особых точек (т. е. линии без точек самопересечения, концевых точек и т. п., поверхности без самопересечения, краев и т. п.).

Большая советская энциклопедия:

Многообразие
Математическое понятие, уточняющее и обобщающее на любое число измерений понятия линии и поверхности, не содержащих особых точек (т. e. линии без точек самопересечения, концевых точек и т. п. и поверхности без самопересечений, краев и т. п.).
Примером одномерного М. могут служить прямая, парабола, окружность, эллипс, вообще любая линия, у каждой точки которой существует окрестность, являющаяся взаимно однозначным и непрерывным (или, как говорят в топологии, гомеоморфным) образом интервала (внутренней части отрезка прямой). Интервал сам является одномерным М., отрезок же не является М. (так как концы его не имеют окрестностей указанного вида).
Примером двумерного М. может служить любая область на плоскости (например, внутренность круга x2 + y2 < r2), сама плоскость, параболоид, сфера, эллипсоид, тор и т. п. Двумерные М. характеризуются тем, что у каждой их точки имеется окрестность, гомеоморфная внутренности круга. Это требование исключает, например, из числа двумерных М. коническую поверхность (её вершина, в которой сходятся две её полости, не имеет требуемого вида окрестности). Однако выделяют специальный класс объектов, которые не удовлетворяют этому требованию, — т. н. многообразия с краем (например, замкнутый круг x2 + y2 r2).
Примером трёхмерного М. может служить обычное евклидово пространство, а также любое Открытое множество в евклидовом пространстве. Трёхмерные М. характеризуются тем, что у каждой их точки имеется окрестность, гомеоморфная внутренности шара.
М. разделяются на замкнутые и открытые (определение см. ниже). В случае одного измерения каждое замкнутое М. гомеоморфно окружности, а каждое открытое — прямой (на рис. 1 изображены одномерные М. и окрестности точки Р на каждом из них). В случае двух измерений уже замкнутые М. довольно разнообразны. Они распадаются на бесконечное число топологических типов: сфераповерхность рода 0 (рис. 2, а), тор — поверхность рода 1 (рис. 2, б), «крендель»поверхность рода 2 (рис. 2, в), вообще «сфера с n ручками» — поверхность рода n (на рис. 2, г изображена такая поверхность при n = 3). Этими примерами исчерпываются все топологические типы замкнутых двумерных ориентируемых М. (см. также Ориентируемая поверхность). Существует ещё бесконечное число замкнутых двумерных неориентируемых М. — односторонних поверхностей, например Проективная плоскость, т. н. односторонний тор (Клейна поверхность). Имеется и классификация открытых двумерных М. Полная классификация М. трёх измерений не найдена (1974) (даже для случая замкнутых М.).
Многообразием n измерений (или n-мерным многообразием) называется всякое хаусдорфово Топологическое пространство, обладающее следующим свойством: каждая его точка имеет окрестность, гомеоморфную внутренности n-мерного шара, и всё пространство может быть представлено в виде суммы конечного или бесконечного (счётного) множества таких окрестностей. М. называется замкнутым, если оно компактно (см. Компактность), в противном случае — открытым. Иногда к определению М. прибавляют ещё требование его связности: каждые две точки М. могут быть в нём соединены непрерывной дугой.
Введение в математику понятия М. любого (натурального) числа измерений n было вызвано весьма разнообразными потребностями геометрии, математического анализа, механики и физики. Важность достаточной широты понимания М. как топологического пространства основана на том, что точками так определённых М. могут быть объекты любой природы, например прямые, сферы, матрицы и т. д.
При надлежащем добавлении требований к определению М. устанавливается понятие гладкого, или дифференцируемого, многообразия. На гладком М. имеется возможность рассматривать дифференцируемые функции и дифференцируемые отображения в себя или в другие гладкие М. Гладкие М. имеют особенно большое значение в современной математике, поскольку именно они наиболее широко используются в приложениях и смежных областях (например, конфигурационные пространства (См. Конфигурационное пространство) и фазовые пространства (См. Фазовое пространство) в механике и физике). На гладких М. можно ввести метрику (См. Метрика), превратив его в Риманово пространство. Это позволяет строить дифференциальную геометрию на М. Например, введя некоторым образом метрику в конфигурационном пространстве механической системы, можно истолковать траектории движения как геодезические линии в этом пространстве (см. Наименьшего действия принцип). М., для элементов которого определено (дифференцируемое) умножение, превращающее М. в группу, называется группой Ли (см. Непрерывная группа).
Понятие М. играет большую роль в теории алгебраических функций, непрерывных групп и т. д. Во всех этих приложениях существенны свойства М., не изменяющиеся при топологических преобразованиях, — т. н. топологические свойства. К ним относятся, например, ориентируемость или неориентируемость М. (см. Ориентация). Изучение этих свойств является одной из важнейших задач топологии.
Лит.: Александров П. С. и Ефремович В. А., Очерк основных понятий топологии, М. — Л., 1936; Александров П. С., Комбинаторная топология, М. — Л., 1947; Ленг С., Введение в теорию дифференцируемых многообразий, пер. с англ., М., 1967.
Н. В. Ефимов.

Рис. 1. Одномерные многообразия.

Рис. 2. Примеры замкнутых двумерных многообразий.

Толковый словарь Кузнецова:

многообразие
МНОГООБРАЗИЕ -я; ср. Проявление чего-л. единого по своей сущности в различных видах и формах; разнообразие чего-л. М. жизни. М. растительного и животного мира. М. минералов. М. запахов. М. рассматриваемых вопросов.

Малый академический словарь:

многообразие
-я, ср.
1.
Проявление чего-л. единого по своей сущности в различных видах и формах.
Многообразие жизни. Многообразие растительного и животного мира.

Нигде, может быть, многосторонний гений Шекспира не отразился с таким многообразием, как в Фальстафе, коего пороки, один с другим связанные, составляют забавную, уродливую цепь. Пушкин, Table-talk.
2.
Разнообразие, обилие чего-л. различного.
Дорога с ее многообразием запахов — людских, конских, машинных — сильно волновала их [коней]. А Кожевников, Живая вода.

Математическая энциклопедия:

Геометрический объект, локально имеющий строение (топологическое, гладкое, гомологическое или иное) числового пространства или другого векторного пространства. Это фундаментальное понятие математики уточняет и обобщает на любое число измерений понятия линии и поверхности. Введение этого понятия вызвано разнообразными потребностями как самой математики, так и др. наук. В математике М. возникают прежде всего как совокупности решений невырожденных систем уравнений, а также как различные совокупности геометрических и др. объектов, допускающих введение локальной параметризации (см. ниже), напр., совокупность плоскостей размерности kв . Они появляются также как решение многомерных вариационных задач (мыльные пленки), как интегральные многообразия пфаффовых систем и динамических систем, как группы геометрических преобразований и их однородные пространства и др. В физике они играют роль моделей пространства-времени, в механике служат фазовыми пространствами, уровнями энергии и проч., в экономике поверхностями безразличия, в психологии пространством ощущений (напр., цветов) и т. д. Хотя исходная идея, кладущаяся в основу определения М., относится к их локальному строению ("такому же, как у Rn "), эта идея позволяет выделить целый ряд характерных именно для М. глобальных черт: (не) ориентируемость, гомологическая Пуанкаре двойственность, возможность определения степени отображения одного М. на другое той же размерности и проч. Особое значение имеет введение касательного расслоения и связанных с ним инвариантов. Локальное строение М. позволяет также привлечь к их изучению геометрическую технику: приведение в общее положение, построение Морса функций и проч., к-рая служит для геометрического изучения глобального строения М., это, грубо говоря, заключается в представлении возможно более простым образом М. в виде объединения простых кусков, симплексов или ручек. При использовании понятия М. также обычно совершается переход от локального к глобальному. Первым шагом является введение параметризации, т. е. представление "пространства состояний" данной задачи областью числового пространства. Это дает возможность описать каждое состояние набором чисел — координатами соответствующей точки (координатный метод). В целом пространство состояний может не допускать подобного описания, т. е. может не иметь гомеоморфизма на область в . Если не прибегать к параметризации с вырождениями (как в полярных координатах и их обобщениях), то возможны два пути: либо введение сначала большего, чем необходимо, числа параметров, и выделение истинного пространства неявно системой уравнений ("уравнения состояния"), либо пространство параметризуется по частям локально, "в малом". Например, множество прямых на плоскости покрыто двумя подмножествами:, состоящее из прямых с уравнениями вида состоящее из прямых с уравнениями вида оба они гомеоморфны с параметризацией парами соответственно. Однако в целом это множество гомеоморфно открытому листу Мёбиуса. Когда М. естественно появляются в той или иной области, они обязательно несут какую-либо дополнительную структуру, к-рая и служит предметом изучения в этой области. Однако важную роль играет и топологич. строение, к-рое ограничивает априорные возможности. Наоборот, в топологии локальные и глобальные свойства М. изучают, привлекая дополнительные структуры (напр., гладкую) в качестве инструментов. Фундаментом общего понятия М. является определение топологического многообразия как топологич. пространства, в к-ром каждая точка имеет окрестность и гомеоморфизм на область в или в полупространстве гомеоморфизм наз. локальной параметризацией или картой, в . Размерность n=dim Mявляется инвариантом связного М. Для несвязного М. обычно берут компоненты одной размерности. М. распадается на внутренность Int Mи край дМ:точки края отвечают в своих картах точкам границы в Rn. Край является (n-1)-мерным М. без края и может бить пустым. Связное М. без края наз. открытым, если оно некомпактно, и замкнутым, если оно компактно. Простейшими примерами четырех возможных типов М. служат шар и его граничная сфера . Хотя нехаусдорфовы М. встречаются в некоторых ситуациях (напр., пространства пучков), обычно принимают, что М. хаусдорфово, паракомпакт-но, имеет счетную базу, в частности, метризуемо. Глобальное задание М. осуществляется атласом — набором карт, покрывающих М. Для использования М. в математич. анализе нужно, чтобы пересчет координат от одной карты к другой был дифференцируемым. Поэтому чаще всего рассматривают дифференцируемые многообразия. Более общим образом вводится понятие Г-строения на М., задаваемого атласами , в к-рых координатные переходы между картами являются гомеоморфизмами, входящими в систему -отображений областей в , замкнутую относительно композиций. Если Г состоит из непрерывно дифференцируемых раз отображений, то говорят, что класс гладкости М. есть . Аналогично определяются аналитические многообразия, кусочно линейные, липшицевы и др. типы М. Два Г-атласа задают одно Г-строение, если их объединение есть Г-атлас. Классификация Г-строений является важнейшей проблемой геометрии М. Отображение одного Г-многообразия в другое наз. Г-отображением, если локально оно имеет "координатное представление" — карты в Ми N, а . В частности, имеется понятие Г-гомеоморфизма ( -диффеоморфизма в случае Г= С r Поскольку в математич. анализе М. важны как носители дифференцируемых отображений, их иногда определяют (см. [12]) через запас гладких функций, определенных в окрестностях точек (см. Росток). Развитие этой идеи привело к понятию предмногообразия, или окольцованного пространства (пучка колец), и далее к понятию схемы. Заменяя Rn на другие векторные и иные пространства, приходят к различным обобщениям понятия М., таким, как напр, комплексно-аналитические М. Бесконечномерные М. возникают в математич. анализе и топологии как пространства отображений и сечений расслоений, как пространства гомеоморфизмов, замкнутых подмножеств и пр. Их локальными моделями служат векторные пространства (банаховы и иные) и такие пространства, как гильбертов кирпич. Понятие гладких и иных строении на бесконечномерных М. изучено недостаточно. Трудности здесь возникают из-за отсутствия технических теорем типа аппроксимаций, существования разбиения единицы (мал запас гладких функций), теоремы о неявной функции и т. п. М. возникают как подмножества при неявном задании их в виде множеств решений систем уравнений (и неравенств в случае непустого края). Этим М. задается сразу, а не по частям, как в случае задания атласом. Однако необходимы условия невырожденности, иначе всякое замкнутое множество можно задать одним уравнением. Существование локальной параметризации обеспечивается по теореме о неявной функции условием максимальности ранга Якоби матрицы данной системы. Уравнения служат языком для выражения средствами математич. анализа свойств М., служащих для определения М. Напр., свойство ортогональности -матрицы записывается системой из уравнений относительно элементов матрицы. Система оказывается невырожденной, а группа ортогональных матриц гладким подмногообразием в В механич. системе с уже введенными координатами меньшие системы выделяются уравнениями или неравенствами, выражающими ограничения или "связи". Если условие невырожденности системы выполнено во всех точках М., то градиенты функций образуют оснащение (k-репер, ортогональный к касательной плоскости в точке М. и непрерывно зависящий от этой точки). М., допускающие оснащение, образуют довольно узкий класс стабильно параллелизуемых М. (напр., они имеют ориентацию). Но локально любое дифференцируемое М. в может быть задано невырожденной системой, а с помощью разбиения единицы можно построить и систему постоянного (а не максимального) ранга, задающую М. Для М., заданного атласом, возникает задача реализации его как подмногообразия в с учетом того или иного Г-строения. Любое топологическое, гладкое или кусочно линейное М. Мвкладывается, т. е. Г-гомеоморфно подмногообразию, в , а в множество вложений плотно в пространстве всех непрерывных отображений. Для других классов вопрос существенно сложнее. Интенсивно он изучается, напр., для римановых многообразий. Алгебраические многообразия, реализующиеся в комплексном проективном пространстве (заменяющем здесь ), составляют очень специальный класс Ходжа многообразий. Если допускать вырожденность системы уравнений, то возникают М. Исследование топологии М. в этом направлении до 70-х гг. было по-существу использованием гладких и кусочно линейных строений на М. (точнее, на гомотопическом типе М.). Переход к чисто топологическим результатам стал возможным лишь после доказательства трудных и глубоких теорем, начиная с доказательства топологической инвариантности характеристических (рациональных) классов (см. Топология многообразий). В конце 70-х г. с этим направлением слилось и упомянутое выше направление чисто топологического изучения М. Ярким примером служит доказательство гипотезы о том, что двойная надстройка над гомологи- ческой трехмерной сферой есть многообразие (сфера). Это позволило дать топологическую характеризацию М. (известную до этих пор лишь для одномерных многообразий и двумерных многообразий), прояснить вопрос о том, какие полиэдры являются М. (препятствием здесь служит лишь недоказанная пока (1982) Пуанкаре гипотеза в размерностях 3 и 4) и др., см. Топология многообразий и [19]. Исторический очерк. Начальный период изучения М. связан с анализом понятия многомерной параметризации, с исследованиями по геометрии, физич. мира (земной поверхности) и по геометрич. аксиоматике. Два способа задания М. в (локальная параметризация и уравнения) были рассмотрены впервые К. Гауссом (К. Gans?, см. [1] с. 127) для случая поверхностей в , а в многомерном случае А. Пуанкаре (Н. Poincare, см. [3], с. 459). Ю. Плюккер [5] изучал локальные координаты в М., составленных из кривых, поверхностей и т. п. Г. Грассман пришел в [6] к общей идее "многомерной протяженности", к-рая была под названием "многообразие" введена в математику Б. Ри-маном (В. Riemaim) в его знаменитой лекции "О гипотезах, лежащих в основании геометрии" (см. [1] с. 30). Свойства различных специальных координат изучались К. Якоби (С. Jacobi), Г. Ламе (G. Lame) и др. (см. [8]). К. Гаусс (см. [1] с. 123) начал в связи со своими работами по геодезии систематич. изучение поверхностей, введя понятие внутренней геометрии и тем самым о М., не зависящем от объемлющего числового пространства, и фактически понятие структуры на М. Его идеи были вполне поняты лишь в теории характеристич. классов, построенной в середине 20 в. Б. Риман перенес идеи К. Гаусса на многомерные М. На основе римановой геометрии был создан трудами Риччп, Леви-Чивита, Кристоффеля и др. тензорный анали;;, дальнейшее развитие к-рого шло в тесной связи с теорией относительности. Другая геометрическая линия развития понятия М. берет начало в открытии возможности неевклидовых геометрий и в построении геометрии на основе понятия движения (Г. Гельмгольц, Н. Helmholtz, см. [1] с. 366). Эта идея была превращена в широкую программу теоретико-группового построения геометрии Ф. Клейном (К. Klein, см. [1] с. 399 и [8]) и привела к глубоким работам С. Ли (S. Lie) по теории непрерывных групп. Линия Гельмгольца — Клейна — Ли долгое время оставалась в стороне от линии Гаусса — Ри-мана — Риччи, заимствовав у нее понятие кривизны, но интересуясь лишь Клейна пространствами. Однако здесь были поставлены важные вопросы о глобальном строении групп Ли и их однородных пространств и тем самым привлечено внимание к глобальному строению М. Важным фактом было произведшее глубокое впечатление открытие Клейном эллиптической геометрии, локально эквивалентной сферической, но глобально имеющей существенно иные свойства, а также открытие Мёбиусом и Клейном явления неориентируемости. Синтез обоих направлений произошел в работах Э. Картана (Е. Cartan, см. [1] с. 483). Отправляясь от исследований Г. Дарбу (G. Darboux) по теории поверхностей, он рассмотрел подвижного репера метод для произвольного М. в и пришел к теории уравнений структуры — далекого обобщения теории Дарбу, включившего в себя теорию С. Ли. В картановском понятии G-структуры соединились идеи римановой геометрии и теории действия групп Ли. По существу Э. Картан ввел понятие касательного расслоения и его структурной группы, окончательно оформленного лишь в 40-х гг. 20 в. (см. [13]). Это понятие позволило также. объединить математич. анализ на М. с топологич. изучением М. Основой послужил изоморфизм де Рама (см;; Рама теорема)- окончательное оформление принадлежащей Пуанкаре идеи (см. [3] с. 472) о связи между вещественными когомологиями и дифференциальными формами. Важнейшим следующим шагом было введение характеристических классов и их выражение как интегралов от форм, выражающихся через форму кривизны (примером здесь служит выражение эйлеровой характеристики в теореме Гаусса — Бонне в форме Дика, см. [14] с. 186). Топологическое изучение М. началось с открытия римаповых поверхностей в связи с представлением комплексно аналитических функций интегралами как попытка избавиться от многозначности этих функций. "Периоды" интегралов привели к понятию чисел связности и в конечном счете к гомологиям. Мысль о многомерном обобщении этого понятия и идея о глобальном гомологическом изучении М. принадлежит Риману (см. [2] с. 294). Это изучение было начато А. Пуанкаре, сделавшим ряд важных открытий и доказавшим Пуанкаре двойственность. Стимулирующую роль имело последовавшее за открытием Римана изучение двумерных многообразий (в первую очередь Мёбиусом и К. Жорданом, см. [14] с. 244), приведшее к полной их классификации. Окончательно это оказалось возможным проделать лишь после прояснения понятия "чистого" гомеоморфизма (А. Пуанкаре, например, пользовался в сущности кусочно гладкими гомеоморфизмами). Это прояснение явилось одним из итогов анализа непрерывности числового континуума, предпринятого в конце 19 в. Наибольшее значение имели в этом направлении постановка 5-й проблемы Гильберта и работы Л. Брауэра (L. Brouwer, [9]), доказавшего теоремы (инвариантность области, инвариантность размерности), к-рые позволили Г. Вейлю [4] сформулировать приятие топологич. М. Однако в высших размерностях топологическое изучение М. долгое время велось в рамках гладких и кусочно линейных строений. Гладкие строения, введенные в книге [20], были проанализированы в основном X. Уитни [21] , а также Г. Уайтхедом и др. Кусочно линейные структуры были введены Л. Брауэром и проанализированы Дж. Александером [22] и также М. Ньюменом (М. Newman) и Г. Уайтхедом. Долгое время они рассматривались лишь как вспомогательное средство топологического изучения М. Лишь в конце 50-х гг. была открыта неединственность гладких строений уже на сферах и в конце 60-х гг. возможность неединственности кусочно линейных строений (например, на торах). После 50-х гг. 20 в. изучение М. проходило под знаком объединения идей топологии и анализа, основанного в первую очередь на понятии характеристич. классов (см. [17]). Лит.:[1] Обоснованиях геометрии, М., 1956; [2] Риман Б., Соч., пер. с нем., М.- Л., 1948; [3] Пуанкаре А., Избр. тр., пер. с франц., т. 2, М., 1972; [4] Wеуl Н., Die Idee der Riemannschen Flache, 3 Aufl., Stuttg., 1955; [5] Plueсker J., Neue Geometrie des Raumer . . ., Abt. 1-2, Lpz., 1868-69; [6] Grass mann H., Die Ausdelmungslehre von 1844, Lpz., 1894; [7] Kronecker L., "Monatsber. Preuss. Akad. Wiss.", 1869, S. 159-226; [8] Клейн Ф., Высшая геометрия, пер. с нем., М.- Л., 1939; [9] Вrоuwеr L. E. J., "Math. Ann.", 1911, Bd 70, S. 161-65; 1911, Bd 71, S. 97-115; 1912, Bd 72, S. 55-6; [10] Weyl H., Mathematische Analyse des Raumproblems, В., 1923; [11] Стинрод Н. Е., Топология косых произведений, пер. с англ., М., 1953; [12] Шевалле К., Теория групп Ли, пер. с англ., т. 1, М., 1948; [13] Лихнерович А., Теория связностей в целом и группы голономий, пер. с франц., М., 1960; [14] Xирш М., Дифференциальная топология, пер. с англ., М., 1979; [15] Манкрс Д ж., в кн.: Милнор Дж., Сташеф Дж., Характеристические классы, пер. с англ., М., 1979, с. 270-358; [16] Nijenhuis A., Theory of the geometric object, Amst., 1952; [17] Хирцебpуx Ф., Топологические методы в алгебраической геометрии, пер. с англ., М., 1973; [18] Сулливан Д., Геометрическая топология, пер. с англ., М., 1975; [19] Cannon J. W., "Bull. Amer. Math. Soc", 1978, v. 84, № 5, p. 832-66; [20] Веблен О., Уайтхед Дж., Основания диференциальной геометрии, пер. с англ., М., 1940; [21] Whitney H., "Ann. Math.", 1936, v. 37, p. 645-80; [22] Alexander J.W., "Trans. Amer., Math. Soc", 1926, v. 28, p. 301-29. См. также лит. при статьях Дифференциальная гео метрия многообразий, Дифференциальная топология, Дифференцируемое многообразие. А.

Орфографический словарь Лопатина:

орф.
многообразие, -я

Грамматический словарь Зализняка:

Многообразие, многообразия, многообразия, многообразий, многообразию, многообразиям, многообразие, многообразия, многообразием, многообразиями, многообразии, многообразиях

Энциклопедический словарь Брокгауза и Ефрона:

(мат.)
Уравнение между двумя координатами, х, у, имеющее вид f(x, у) = 0, определяет линию, которая, как известно, имеет одно измерение. Уравнение f(x, y, z) = 0 между тремя координатами определяет поверхность, имеющую два измерения. Обобщая такого рода представления, говорят, что уравнение f(x1, x2, x3,.. ., хn, хn+1) = 0 между n + 1 координатами представляет М. п-ого измерения.
Н. Д.

Смотреть другие определения →


© «СловоТолк.Ру» — толковые и энциклопедические словари, 2007-2020

Top.Mail.Ru
Top.Mail.Ru